204 lines
5.8 KiB
Java
204 lines
5.8 KiB
Java
|
package net.osmand;
|
||
|
|
||
|
// simple exact TSP solver based on branch-and-bound/Held--Karp
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Collections;
|
||
|
import java.util.Comparator;
|
||
|
import java.util.List;
|
||
|
import java.util.PriorityQueue;
|
||
|
|
||
|
import net.osmand.data.LatLon;
|
||
|
import net.osmand.util.MapUtils;
|
||
|
|
||
|
// http://stackoverflow.com/questions/7159259/optimized-tsp-algorithms
|
||
|
public class TspHeldKarp {
|
||
|
// number of cities
|
||
|
private int n;
|
||
|
// cost matrix
|
||
|
private double[][] cost;
|
||
|
private int[] order;
|
||
|
// matrix of adjusted costs
|
||
|
private double[][] costWithPi;
|
||
|
Node bestNode = new Node();
|
||
|
|
||
|
|
||
|
/// OSMAND Modification
|
||
|
public TspHeldKarp readInput(List<LatLon> ls, boolean returnToInitialPoint) {
|
||
|
n = ls.size();
|
||
|
order = new int[n];
|
||
|
cost = new double[n][n];
|
||
|
// TSPLIB distances are rounded to the nearest integer to avoid the sum of square roots problem
|
||
|
System.out.println("Cost");
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (!returnToInitialPoint && (j == 0)) {
|
||
|
cost[i][j] = 0;
|
||
|
} else {
|
||
|
cost[i][j] = Math.rint(MapUtils.getDistance(ls.get(i), ls.get(j)));
|
||
|
}
|
||
|
}
|
||
|
System.out.println(Arrays.toString(cost[i]));
|
||
|
}
|
||
|
|
||
|
return this;
|
||
|
}
|
||
|
//
|
||
|
|
||
|
|
||
|
public int[] solve() {
|
||
|
bestNode.lowerBound = Double.MAX_VALUE;
|
||
|
Node currentNode = new Node();
|
||
|
currentNode.excluded = new boolean[n][n];
|
||
|
costWithPi = new double[n][n];
|
||
|
computeHeldKarp(currentNode);
|
||
|
PriorityQueue<Node> pq = new PriorityQueue<Node>(11, new NodeComparator());
|
||
|
do {
|
||
|
do {
|
||
|
boolean isTour = true;
|
||
|
int i = -1;
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (currentNode.degree[j] > 2 && (i < 0 || currentNode.degree[j] < currentNode.degree[i]))
|
||
|
i = j;
|
||
|
}
|
||
|
if (i < 0) {
|
||
|
if (currentNode.lowerBound < bestNode.lowerBound) {
|
||
|
bestNode = currentNode;
|
||
|
System.err.printf("%.0f", bestNode.lowerBound);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
System.err.printf(".");
|
||
|
PriorityQueue<Node> children = new PriorityQueue<Node>(11, new NodeComparator());
|
||
|
children.add(exclude(currentNode, i, currentNode.parent[i]));
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (currentNode.parent[j] == i)
|
||
|
children.add(exclude(currentNode, i, j));
|
||
|
}
|
||
|
currentNode = children.poll();
|
||
|
pq.addAll(children);
|
||
|
} while (currentNode.lowerBound < bestNode.lowerBound);
|
||
|
System.err.printf("%n");
|
||
|
currentNode = pq.poll();
|
||
|
} while (currentNode != null && currentNode.lowerBound < bestNode.lowerBound);
|
||
|
// output suitable for gnuplot
|
||
|
// set style data vector
|
||
|
int j = 0;
|
||
|
int k = 0;
|
||
|
do {
|
||
|
int i = bestNode.parent[j];
|
||
|
order[k++] = j;
|
||
|
System.out.printf("%f\t\n", cost[j][i]);
|
||
|
j = i;
|
||
|
} while (j != 0);
|
||
|
return order;
|
||
|
}
|
||
|
|
||
|
private Node exclude(Node node, int i, int j) {
|
||
|
Node child = new Node();
|
||
|
child.excluded = node.excluded.clone();
|
||
|
child.excluded[i] = node.excluded[i].clone();
|
||
|
child.excluded[j] = node.excluded[j].clone();
|
||
|
child.excluded[i][j] = true;
|
||
|
child.excluded[j][i] = true;
|
||
|
computeHeldKarp(child);
|
||
|
return child;
|
||
|
}
|
||
|
|
||
|
private void computeHeldKarp(Node node) {
|
||
|
node.pi = new double[n];
|
||
|
node.lowerBound = Double.MIN_VALUE;
|
||
|
node.degree = new int[n];
|
||
|
node.parent = new int[n];
|
||
|
double lambda = 0.1;
|
||
|
while (lambda > 1e-06) {
|
||
|
double previousLowerBound = node.lowerBound;
|
||
|
computeOneTree(node);
|
||
|
if (!(node.lowerBound < bestNode.lowerBound)) return;
|
||
|
if (!(node.lowerBound < previousLowerBound)) lambda *= 0.9;
|
||
|
int denom = 0;
|
||
|
for (int i = 1; i < n; i++) {
|
||
|
int d = node.degree[i] - 2;
|
||
|
denom += d * d;
|
||
|
}
|
||
|
if (denom == 0) return;
|
||
|
double t = lambda * node.lowerBound / denom;
|
||
|
for (int i = 1; i < n; i++) node.pi[i] += t * (node.degree[i] - 2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private void computeOneTree(Node node) {
|
||
|
// compute adjusted costs
|
||
|
node.lowerBound = 0.0;
|
||
|
Arrays.fill(node.degree, 0);
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
for (int j = 0; j < n; j++) costWithPi[i][j] = node.excluded[i][j] ? Double.MAX_VALUE : cost[i][j] + node.pi[i] + node.pi[j];
|
||
|
}
|
||
|
int firstNeighbor;
|
||
|
int secondNeighbor;
|
||
|
// find the two cheapest edges from 0
|
||
|
if (costWithPi[0][2] < costWithPi[0][1]) {
|
||
|
firstNeighbor = 2;
|
||
|
secondNeighbor = 1;
|
||
|
} else {
|
||
|
firstNeighbor = 1;
|
||
|
secondNeighbor = 2;
|
||
|
}
|
||
|
for (int j = 3; j < n; j++) {
|
||
|
if (costWithPi[0][j] < costWithPi[0][secondNeighbor]) {
|
||
|
if (costWithPi[0][j] < costWithPi[0][firstNeighbor]) {
|
||
|
secondNeighbor = firstNeighbor;
|
||
|
firstNeighbor = j;
|
||
|
} else {
|
||
|
secondNeighbor = j;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
addEdge(node, 0, firstNeighbor);
|
||
|
Arrays.fill(node.parent, firstNeighbor);
|
||
|
node.parent[firstNeighbor] = 0;
|
||
|
// compute the minimum spanning tree on nodes 1..n-1
|
||
|
double[] minCost = costWithPi[firstNeighbor].clone();
|
||
|
for (int k = 2; k < n; k++) {
|
||
|
int i;
|
||
|
for (i = 1; i < n; i++) {
|
||
|
if (node.degree[i] == 0) break;
|
||
|
}
|
||
|
for (int j = i + 1; j < n; j++) {
|
||
|
if (node.degree[j] == 0 && minCost[j] < minCost[i]) i = j;
|
||
|
}
|
||
|
addEdge(node, node.parent[i], i);
|
||
|
for (int j = 1; j < n; j++) {
|
||
|
if (node.degree[j] == 0 && costWithPi[i][j] < minCost[j]) {
|
||
|
minCost[j] = costWithPi[i][j];
|
||
|
node.parent[j] = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
addEdge(node, 0, secondNeighbor);
|
||
|
node.parent[0] = secondNeighbor;
|
||
|
node.lowerBound = Math.rint(node.lowerBound);
|
||
|
}
|
||
|
|
||
|
private void addEdge(Node node, int i, int j) {
|
||
|
double q = node.lowerBound;
|
||
|
node.lowerBound += costWithPi[i][j];
|
||
|
node.degree[i]++;
|
||
|
node.degree[j]++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class Node {
|
||
|
public boolean[][] excluded;
|
||
|
// Held--Karp solution
|
||
|
public double[] pi;
|
||
|
public double lowerBound;
|
||
|
public int[] degree;
|
||
|
public int[] parent;
|
||
|
}
|
||
|
|
||
|
class NodeComparator implements Comparator<Node> {
|
||
|
public int compare(Node a, Node b) {
|
||
|
return Double.compare(a.lowerBound, b.lowerBound);
|
||
|
}
|
||
|
}
|