327 lines
9.7 KiB
Java
327 lines
9.7 KiB
Java
|
package net.osmand;
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.Arrays;
|
||
|
import java.util.List;
|
||
|
import java.util.Random;
|
||
|
|
||
|
import net.osmand.data.LatLon;
|
||
|
import net.osmand.util.MapUtils;
|
||
|
/*
|
||
|
* === Implementation of ant swarm TSP solver. ===
|
||
|
*
|
||
|
* The algorithm is described in [1, page 8].
|
||
|
*
|
||
|
* == Tweaks/notes ==
|
||
|
* - I added a system where the ant chooses with probability
|
||
|
* "pr" to go to a purely random town. This did not yield better
|
||
|
* results so I left "pr" fairly low.
|
||
|
* - Used an approximate pow function - the speedup is
|
||
|
* more than a factor of 10! And accuracy is not needed
|
||
|
* See AntTsp.pow for details.
|
||
|
*
|
||
|
* == Parameters ==
|
||
|
* I set the parameters to values suggested in [1]. My own experimentation
|
||
|
* showed that they are pretty good.
|
||
|
*
|
||
|
* == Usage ==
|
||
|
* - Compile: javac AntTsp.java
|
||
|
* - Run: java AntTsp <TSP file>
|
||
|
*
|
||
|
* == TSP file format ==
|
||
|
* Full adjacency matrix. Columns separated by spaces, rows by newline.
|
||
|
* Weights parsed as doubles, must be >= 0.
|
||
|
*
|
||
|
* == References ==
|
||
|
* [1] M. Dorigo, The Ant System: Optimization by a colony of cooperating agents
|
||
|
* ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
// https://github.com/lukedodd/ant-tsp
|
||
|
public class TspAnt {
|
||
|
// Algorithm parameters:
|
||
|
// original amount of trail
|
||
|
private double c = 1.0;
|
||
|
// trail preference
|
||
|
private double alpha = 1;
|
||
|
// greedy preference
|
||
|
private double beta = 5;
|
||
|
// trail evaporation coefficient
|
||
|
private double evaporation = 0.5;
|
||
|
// new trail deposit coefficient;
|
||
|
private double Q = 500;
|
||
|
// number of ants used = numAntFactor*numTowns
|
||
|
private double numAntFactor = 0.8;
|
||
|
// probability of pure random selection of the next town
|
||
|
private double pr = 0.01;
|
||
|
|
||
|
// Reasonable number of iterations
|
||
|
// - results typically settle down by 500
|
||
|
private int maxIterations = 2000;
|
||
|
|
||
|
public int n = 0; // # towns
|
||
|
public int m = 0; // # ants
|
||
|
private double graph[][] = null;
|
||
|
private double trails[][] = null;
|
||
|
private Ant ants[] = null;
|
||
|
private Random rand = new Random();
|
||
|
private double probs[] = null;
|
||
|
|
||
|
private int currentIndex = 0;
|
||
|
|
||
|
public int[] bestTour;
|
||
|
public double bestTourLength;
|
||
|
|
||
|
// Ant class. Maintains tour and tabu information.
|
||
|
private class Ant {
|
||
|
public int tour[] = new int[graph.length];
|
||
|
// Maintain visited list for towns, much faster
|
||
|
// than checking if in tour so far.
|
||
|
public boolean visited[] = new boolean[graph.length];
|
||
|
|
||
|
public void visitTown(int town) {
|
||
|
tour[currentIndex + 1] = town;
|
||
|
visited[town] = true;
|
||
|
}
|
||
|
|
||
|
public boolean visited(int i) {
|
||
|
return visited[i];
|
||
|
}
|
||
|
|
||
|
public double tourLength() {
|
||
|
double length = graph[tour[n - 1]][tour[0]];
|
||
|
for (int i = 0; i < n - 1; i++) {
|
||
|
length += graph[tour[i]][tour[i + 1]];
|
||
|
}
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
public void clear() {
|
||
|
for (int i = 0; i < n; i++)
|
||
|
visited[i] = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Read in graph from a file.
|
||
|
// Allocates all memory.
|
||
|
// Adds 1 to edge lengths to ensure no zero length edges.
|
||
|
public TspAnt readGraph(List<LatLon> intermediates, LatLon start, LatLon end) {
|
||
|
List<LatLon> l = new ArrayList<LatLon>();
|
||
|
l.add(start);
|
||
|
l.addAll(intermediates);
|
||
|
l.add(end);
|
||
|
n = l.size() ;
|
||
|
// System.out.println("Cost");
|
||
|
graph = new double[n][n];
|
||
|
double maxSum = 0;
|
||
|
for (int i = 0; i < n ; i++) {
|
||
|
double maxIWeight = 0;
|
||
|
for (int j = 1; j < n ; j++) {
|
||
|
double d = Math.rint(MapUtils.getDistance(l.get(i), l.get(j))) + 0.1;
|
||
|
maxIWeight = Math.max(d, maxIWeight);
|
||
|
graph[i][j] = d;
|
||
|
}
|
||
|
maxSum += maxIWeight;
|
||
|
}
|
||
|
maxSum = Math.rint(maxSum) + 1;
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
if (i == n - 1) {
|
||
|
graph[i][0] = 0.1;
|
||
|
} else {
|
||
|
graph[i][0] = maxSum;
|
||
|
}
|
||
|
// System.out.println(Arrays.toString(graph[i]));
|
||
|
}
|
||
|
|
||
|
m = (int) (n * numAntFactor);
|
||
|
// all memory allocations done here
|
||
|
trails = new double[n][n];
|
||
|
probs = new double[n];
|
||
|
ants = new Ant[m];
|
||
|
for (int j = 0; j < m; j++)
|
||
|
ants[j] = new Ant();
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
// Approximate power function, Math.pow is quite slow and we don't need accuracy.
|
||
|
// See:
|
||
|
// http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/
|
||
|
// Important facts:
|
||
|
// - >25 times faster
|
||
|
// - Extreme cases can lead to error of 25% - but usually less.
|
||
|
// - Does not harm results -- not surprising for a stochastic algorithm.
|
||
|
public static double pow(final double a, final double b) {
|
||
|
final int x = (int) (Double.doubleToLongBits(a) >> 32);
|
||
|
final int y = (int) (b * (x - 1072632447) + 1072632447);
|
||
|
return Double.longBitsToDouble(((long) y) << 32);
|
||
|
}
|
||
|
|
||
|
// Store in probs array the probability of moving to each town
|
||
|
// [1] describes how these are calculated.
|
||
|
// In short: ants like to follow stronger and shorter trails more.
|
||
|
private void probTo(Ant ant) {
|
||
|
int i = ant.tour[currentIndex];
|
||
|
|
||
|
double denom = 0.0;
|
||
|
for (int l = 0; l < n; l++)
|
||
|
if (!ant.visited(l))
|
||
|
denom += pow(trails[i][l], alpha)
|
||
|
* pow(1.0 / graph[i][l], beta);
|
||
|
|
||
|
|
||
|
for (int j = 0; j < n; j++) {
|
||
|
if (ant.visited(j)) {
|
||
|
probs[j] = 0.0;
|
||
|
} else {
|
||
|
double numerator = pow(trails[i][j], alpha)
|
||
|
* pow(1.0 / graph[i][j], beta);
|
||
|
probs[j] = numerator / denom;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// Given an ant select the next town based on the probabilities
|
||
|
// we assign to each town. With pr probability chooses
|
||
|
// totally randomly (taking into account tabu list).
|
||
|
private int selectNextTown(Ant ant) {
|
||
|
// sometimes just randomly select
|
||
|
if (rand.nextDouble() < pr) {
|
||
|
int t = rand.nextInt(n - currentIndex); // random town
|
||
|
int j = -1;
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
if (!ant.visited(i))
|
||
|
j++;
|
||
|
if (j == t)
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
// calculate probabilities for each town (stored in probs)
|
||
|
probTo(ant);
|
||
|
// randomly select according to probs
|
||
|
double r = rand.nextDouble();
|
||
|
double tot = 0;
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
tot += probs[i];
|
||
|
if (tot >= r)
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
throw new RuntimeException("Not supposed to get here.");
|
||
|
}
|
||
|
|
||
|
// Update trails based on ants tours
|
||
|
private void updateTrails() {
|
||
|
// evaporation
|
||
|
for (int i = 0; i < n; i++)
|
||
|
for (int j = 0; j < n; j++)
|
||
|
trails[i][j] *= evaporation;
|
||
|
|
||
|
// each ants contribution
|
||
|
for (Ant a : ants) {
|
||
|
double contribution = Q / a.tourLength();
|
||
|
for (int i = 0; i < n - 1; i++) {
|
||
|
trails[a.tour[i]][a.tour[i + 1]] += contribution;
|
||
|
}
|
||
|
trails[a.tour[n - 1]][a.tour[0]] += contribution;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Choose the next town for all ants
|
||
|
private void moveAnts() {
|
||
|
// each ant follows trails...
|
||
|
while (currentIndex < n - 1) {
|
||
|
for (Ant a : ants)
|
||
|
a.visitTown(selectNextTown(a));
|
||
|
currentIndex++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// m ants with random start city
|
||
|
private void setupAnts() {
|
||
|
currentIndex = -1;
|
||
|
for (int i = 0; i < m; i++) {
|
||
|
ants[i].clear(); // faster than fresh allocations.
|
||
|
ants[i].visitTown(rand.nextInt(n));
|
||
|
}
|
||
|
currentIndex++;
|
||
|
|
||
|
}
|
||
|
|
||
|
private void updateBest() {
|
||
|
if (bestTour == null) {
|
||
|
bestTour = ants[0].tour;
|
||
|
bestTourLength = ants[0].tourLength();
|
||
|
}
|
||
|
for (Ant a : ants) {
|
||
|
if (a.tourLength() < bestTourLength) {
|
||
|
bestTourLength = a.tourLength();
|
||
|
bestTour = a.tour.clone();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static String tourToString(int tour[]) {
|
||
|
String t = new String();
|
||
|
for (int i : tour)
|
||
|
t = t + " " + i;
|
||
|
return t;
|
||
|
}
|
||
|
|
||
|
public int[] solve() {
|
||
|
// clear trails
|
||
|
for (int i = 0; i < n; i++)
|
||
|
for (int j = 0; j < n; j++)
|
||
|
trails[i][j] = c;
|
||
|
|
||
|
int iteration = 0;
|
||
|
// run for maxIterations
|
||
|
// preserve best tour
|
||
|
while (iteration < maxIterations) {
|
||
|
setupAnts();
|
||
|
moveAnts();
|
||
|
updateTrails();
|
||
|
updateBest();
|
||
|
iteration++;
|
||
|
}
|
||
|
// Subtract n because we added one to edges on load
|
||
|
System.out.println("Best tour length: " + (bestTourLength - n*0.1));
|
||
|
System.out.println("Best tour:" + tourToString(bestTour));
|
||
|
return alignAnswer(bestTour.clone());
|
||
|
}
|
||
|
|
||
|
private static int[] alignAnswer(int[] ans) {
|
||
|
int[] alignAns = new int[ans.length];
|
||
|
int shift = 0;
|
||
|
for(int j = 0; j < ans.length; j++) {
|
||
|
if(ans[j] == 0) {
|
||
|
shift = j;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
for (int j = 0; j < ans.length; j++) {
|
||
|
alignAns[(j - shift + ans.length) % ans.length] = ans[j];
|
||
|
}
|
||
|
return alignAns;
|
||
|
}
|
||
|
|
||
|
// Load graph file given on args[0].
|
||
|
// (Full adjacency matrix. Columns separated by spaces, rows by newlines.)
|
||
|
// Solve the TSP repeatedly for maxIterations
|
||
|
// printing best tour so far each time.
|
||
|
public static void main(String[] args) {
|
||
|
// Load in TSP data file.
|
||
|
if (args.length < 1) {
|
||
|
System.err.println("Please specify a TSP data file.");
|
||
|
return;
|
||
|
}
|
||
|
TspAnt anttsp = new TspAnt();
|
||
|
|
||
|
// Repeatedly solve - will keep the best tour found.
|
||
|
for (; ; ) {
|
||
|
anttsp.solve();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|