OsmAnd/build-scripts/net.osmand.translator/test/resources/MapUtils_1.java

298 lines
8.8 KiB
Java
Raw Normal View History

2012-09-29 10:18:36 +02:00
/**
* This utility class includes :
* 1. distance algorithms
* 2. finding center for array of nodes
* 3. tile evaluation algorithms
*
*
*/
public class MapUtils_1 {
private static final String BASE_SHORT_OSM_URL = "http://osm.org/go/";
/**
* This array is a lookup table that translates 6-bit positive integger
* index values into their "Base64 Alphabet" equivalents as specified
* in Table 1 of RFC 2045.
*/
private static final char intToBase64[] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_', '@'
};
/**
* Gets distance in meters
*/
public static double getDistance(double lat1, double lon1, double lat2, double lon2){
double R = 6371; // km
double dLat = Math.toRadians(lat2-lat1);
double dLon = Math.toRadians(lon2-lon1);
double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(Math.toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return R * c * 1000;
}
public static double checkLongitude(double longitude) {
while (longitude < -180 || longitude > 180) {
if (longitude < 0) {
longitude += 360;
} else {
longitude -= 360;
}
}
return longitude;
}
public static double checkLatitude(double latitude) {
while (latitude < -90 || latitude > 90) {
if (latitude < 0) {
latitude += 180;
} else {
latitude -= 180;
}
}
if(latitude < -85.0511) {
return -85.0511;
} else if(latitude > 85.0511){
return 85.0511;
}
return latitude;
}
public static int get31TileNumberX(double longitude){
longitude = checkLongitude(longitude);
long l = 1l << 31;
return (int)((longitude + 180d)/360d * l);
}
public static int get31TileNumberY( double latitude){
latitude = checkLatitude(latitude);
double eval = Math.log( Math.tan(Math.toRadians(latitude)) + 1/Math.cos(Math.toRadians(latitude)) );
long l = 1l << 31;
if(eval > Math.PI){
eval = Math.PI;
}
return (int) ((1 - eval / Math.PI) / 2 * l);
}
public static double get31LongitudeX(int tileX){
return getLongitudeFromTile(21, tileX /1024f);
}
public static double get31LatitudeY(int tileY){
return getLatitudeFromTile(21, tileY /1024f);
}
/**
*
* Theses methods operate with degrees (evaluating tiles & vice versa)
* degree longitude measurements (-180, 180) [27.56 Minsk]
// degree latitude measurements (90, -90) [53.9]
*/
public static double getTileNumberX(float zoom, double longitude){
if(longitude == 180d) {
return getPowZoom(zoom) - 1;
}
longitude = checkLongitude(longitude);
return (longitude + 180d)/360d * getPowZoom(zoom);
}
public static double getTileNumberY(float zoom, double latitude){
latitude = checkLatitude(latitude);
double eval = Math.log( Math.tan(Math.toRadians(latitude)) + 1/Math.cos(Math.toRadians(latitude)) );
if (Double.isInfinite(eval) || Double.isNaN(eval)) {
latitude = latitude < 0 ? - 89.9 : 89.9;
eval = Math.log( Math.tan(Math.toRadians(latitude)) + 1/Math.cos(Math.toRadians(latitude)) );
}
double result = (1 - eval / Math.PI) / 2 * getPowZoom(zoom);
return result;
}
public static double getTileEllipsoidNumberY(float zoom, double latitude){
final double E2 = (double) latitude * Math.PI / 180;
final long sradiusa = 6378137;
final long sradiusb = 6356752;
final double J2 = (double) Math.sqrt(sradiusa * sradiusa - sradiusb * sradiusb) / sradiusa;
final double M2 = (double) Math.log((1 + Math.sin(E2))
/ (1 - Math.sin(E2)))/ 2- J2 * Math.log((1 + J2 * Math.sin(E2))/ (1 - J2 * Math.sin(E2))) / 2;
final double B2 = getPowZoom(zoom);
return B2 / 2 - M2 * B2 / 2 / Math.PI;
}
public static double getLatitudeFromEllipsoidTileY(float zoom, float tileNumberY){
final double MerkElipsK = 0.0000001;
final long sradiusa = 6378137;
final long sradiusb = 6356752;
final double FExct = (double) Math.sqrt(sradiusa * sradiusa
- sradiusb * sradiusb)
/ sradiusa;
final double TilesAtZoom = getPowZoom(zoom);
double result = (tileNumberY - TilesAtZoom / 2)
/ -(TilesAtZoom / (2 * Math.PI));
result = (2 * Math.atan(Math.exp(result)) - Math.PI / 2) * 180
/ Math.PI;
double Zu = result / (180 / Math.PI);
double yy = (tileNumberY - TilesAtZoom / 2);
double Zum1 = Zu;
Zu = Math.asin(1 - ((1 + Math.sin(Zum1)) * Math.pow(1 - FExct * Math.sin(Zum1), FExct))
/ (Math.exp((2 * yy) / -(TilesAtZoom / (2 * Math.PI))) * Math.pow(1 + FExct * Math.sin(Zum1), FExct)));
while (Math.abs(Zum1 - Zu) >= MerkElipsK) {
Zum1 = Zu;
Zu = Math.asin(1 - ((1 + Math.sin(Zum1)) * Math.pow(1 - FExct * Math.sin(Zum1), FExct))
/ (Math.exp((2 * yy) / -(TilesAtZoom / (2 * Math.PI))) * Math.pow(1 + FExct * Math.sin(Zum1), FExct)));
}
return Zu * 180 / Math.PI;
}
public static double getLongitudeFromTile(float zoom, double x) {
return x / getPowZoom(zoom) * 360.0 - 180.0;
}
public static double getPowZoom(float zoom){
if(zoom >= 0 && zoom - Math.floor(zoom) < 0.05f){
return 1 << ((int)zoom);
} else {
return Math.pow(2, zoom);
}
}
public static float calcDiffPixelX(float rotateSin, float rotateCos, float dTileX, float dTileY, float tileSize){
return (rotateCos * dTileX - rotateSin * dTileY) * tileSize ;
}
public static float calcDiffPixelY(float rotateSin, float rotateCos, float dTileX, float dTileY, float tileSize){
return (rotateSin * dTileX + rotateCos * dTileY) * tileSize ;
}
public static double getLatitudeFromTile(float zoom, double y){
int sign = y < 0 ? -1 : 1;
double result = Math.atan(sign*Math.sinh(Math.PI * (1 - 2 * y / getPowZoom(zoom)))) * 180d / Math.PI;
return result;
}
public static int getPixelShiftX(int zoom, double long1, double long2, int tileSize){
return (int) ((getTileNumberX(zoom, long1) - getTileNumberX(zoom, long2)) * tileSize);
}
public static int getPixelShiftY(int zoom, double lat1, double lat2, int tileSize){
return (int) ((getTileNumberY(zoom, lat1) - getTileNumberY(zoom, lat2)) * tileSize);
}
// Examples
// System.out.println(buildShortOsmUrl(51.51829d, 0.07347d, 16)); // http://osm.org/go/0EEQsyfu
// System.out.println(buildShortOsmUrl(52.30103d, 4.862927d, 18)); // http://osm.org/go/0E4_JiVhs
// System.out.println(buildShortOsmUrl(40.59d, -115.213d, 9)); // http://osm.org/go/TelHTB--
public static String buildShortOsmUrl(double latitude, double longitude, int zoom){
long lat = (long) (((latitude + 90d)/180d)*(1l << 32));
long lon = (long) (((longitude + 180d)/360d)*(1l << 32));
long code = interleaveBits(lon, lat);
StringBuilder str = new StringBuilder(10);
str.append(BASE_SHORT_OSM_URL);
// add eight to the zoom level, which approximates an accuracy of one pixel in a tile.
for(int i=0; i< Math.ceil((zoom+8)/3d); i++){
str.append(intToBase64[(int) ((code >> (58 - 6 * i)) & 0x3f)]);
}
// append characters onto the end of the string to represent
// partial zoom levels (characters themselves have a granularity of 3 zoom levels).
for(int j=0; j< (zoom + 8) % 3 ; j++){
str.append('-');
}
str.append("?m");
return str.toString();
}
/**
* interleaves the bits of two 32-bit numbers. the result is known as a Morton code.
*/
private static long interleaveBits(long x, long y){
long c = 0;
for(byte b = 31; b>=0; b--){
c = (c << 1) | ((x >> b) & 1);
c = (c << 1) | ((y >> b) & 1);
}
return c;
}
/**
* Calculate rotation diff D, that R (rotate) + D = T (targetRotate)
* D is between -180, 180
* @param rotate
* @param targetRotate
* @return
*/
public static float unifyRotationDiff(float rotate, float targetRotate) {
float d = targetRotate - rotate;
while(d >= 180){
d -= 360;
}
while(d < -180){
d += 360;
}
return d;
}
/**
* Calculate rotation diff D, that R (rotate) + D = T (targetRotate)
* D is between -180, 180
* @param rotate
* @param targetRotate
* @return
*/
public static float unifyRotationTo360(float rotate) {
while(rotate < 0){
rotate += 360;
}
while(rotate > 360){
rotate -= 360;
}
return rotate;
}
/**
* @param diff align difference between 2 angles ]-PI, PI]
* @return
*/
public static double alignAngleDifference(double diff) {
while(diff > Math.PI) {
diff -= 2 * Math.PI;
}
while(diff <=-Math.PI) {
diff += 2 * Math.PI;
}
return diff;
}
/**
* @param diff align difference between 2 angles ]-180, 180]
* @return
*/
public static double degreesDiff(double a1, double a2) {
double diff = a1 - a2;
while(diff > 180) {
diff -= 360;
}
while(diff <=-180) {
diff += 360;
}
return diff;
}
}