Add new turns

This commit is contained in:
Victor Shcherb 2016-08-22 02:00:14 +03:00
parent 33a428aea1
commit ae77c965af

View file

@ -25,9 +25,114 @@ public class TurnPathHelper {
public static final int FIRST_TURN = 1;
public static final int SECOND_TURN = 2;
public static final int THIRD_TURN = 3;
private static final boolean USE_NEW_RNDB = true;
private static final boolean SHOW_STEPS = true;
private static class TurnVariables {
float radEndOfArrow = 44;
float radInnerCircle = 10;
float radOuterCircle = radInnerCircle + 8;
float radBottom = radOuterCircle + 10;
float radStepInter = radOuterCircle + 6;
float radArrowTriangle1 = radOuterCircle + 7;
float widthStepIn = 8;
float widthStepInter = 6;
float widthArrow = 22;
float radArrowTriangle2;
private double dfL;
private double dfAr2;
private double dfStepInter;
private double dfAr;
private double dfOut;
private double dfStepOut;
private double dfIn;
private double minDelta;
private double rot;
private float cx;
private float cy;
private float scaleTriangle;
private TurnVariables(boolean leftSide, float turnAngle, int out, int wa, int ha, float scaleTriangle) {
this.scaleTriangle = scaleTriangle;
widthArrow = widthArrow * scaleTriangle;
radArrowTriangle2 = radArrowTriangle1 + 1 * scaleTriangle * scaleTriangle;
dfL = (leftSide ? 1 : -1) * Math.asin(widthStepIn / (2.0 * radBottom));
dfAr2 = (leftSide ? 1 : -1) * Math.asin(widthArrow / (2.0 * radArrowTriangle2));
dfStepInter = (leftSide ? 1 : -1) * Math.asin(widthStepInter / radStepInter);
dfAr = Math.asin(radBottom * Math.sin(dfL) / radArrowTriangle1);
dfOut = Math.asin(radBottom * Math.sin(dfL) / radOuterCircle);
dfStepOut = Math.asin(radStepInter * Math.sin(dfStepInter) / radOuterCircle);
dfIn = Math.asin(radBottom * Math.sin(dfL) / radInnerCircle);
minDelta = Math.abs(dfIn * 2 / Math.PI * 180) + 2;
// System.out.println("Angle " + dfL + " " + dfOut + " " + dfIn + " " + minDelta + " ");
rot = alignRotation(turnAngle, leftSide, minDelta, out) / 180 * Math.PI;
cx = wa / 2;
cy = ha / 2;
// align center
float potentialArrowEndX = (float) (Math.sin(rot) * radEndOfArrow);
float potentialArrowEndY = (float) (Math.cos(rot) * radEndOfArrow);
if (potentialArrowEndX > cx) {
cx = potentialArrowEndX;
} else if (potentialArrowEndX < -cx) {
cx = 2 * cx + potentialArrowEndX;
}
if (potentialArrowEndY > cy) {
cy = 2 * cy - potentialArrowEndY;
} else if (potentialArrowEndY < -cy) {
cy = -potentialArrowEndY;
}
}
private float getProjX(double angle, double radius) {
return getX(angle, radius) + cx;
}
private float getProjY(double angle, double radius) {
return getY(angle, radius) + cy;
}
public float getTriangle2X() {
return getProjX(rot + dfAr, radArrowTriangle1);
}
public float getTriangle1X() {
return getProjX(rot - dfAr, radArrowTriangle1);
}
public float getTriangle2Y() {
return getProjY(rot + dfAr, radArrowTriangle1);
}
public float getTriangle1Y() {
return getProjY(rot - dfAr, radArrowTriangle1);
}
public void drawTriangle(Path pathForTurn) {
// up from arc
arcLineTo(pathForTurn, rot - dfAr, cx, cy, radArrowTriangle1);
// left triangle
// arcLineTo(pathForTurn, rot - dfAr2, cx, cy, radAr2); // 1.
// arcQuadTo(pathForTurn, rot - dfAr2, radAr2, rot, radArrow, 0.9f, cx, cy); // 2.
arcQuadTo(pathForTurn, rot - dfAr, radArrowTriangle1, rot - dfAr2, radArrowTriangle2, rot, radEndOfArrow,
4.5f * scaleTriangle, cx, cy); // 3.
// arcLineTo(pathForTurn, rot, cx, cy, radArrow); // 1.
arcQuadTo(pathForTurn, rot - dfAr2, radArrowTriangle2, rot, radEndOfArrow, rot + dfAr2, radArrowTriangle2,
4.5f, cx, cy);
// right triangle
// arcLineTo(pathForTurn, rot + dfAr2, cx, cy, radAr2); // 1.
arcQuadTo(pathForTurn, rot, radEndOfArrow, rot + dfAr2, radArrowTriangle2, rot + dfAr, radArrowTriangle1,
4.5f * scaleTriangle, cx, cy);
arcLineTo(pathForTurn, rot + dfAr, cx, cy, radArrowTriangle1);
}
}
// 72x72
public static void calcTurnPath(Path pathForTurn, Path outlay, TurnType turnType,
Matrix transform, PointF center, boolean mini) {
@ -40,203 +145,160 @@ public class TurnPathHelper {
}
int ha = 72;
int wa = 72;
int th = 12; // thickness
pathForTurn.moveTo(wa / 2, ha - 1);
float sarrowL = 22; // side of arrow ?
float harrowL = (float) Math.sqrt(2) * sarrowL; // hypotenuse of arrow
float spartArrowL = (float) ((sarrowL - th / Math.sqrt(2)) / 2);
float hpartArrowL = (float) (harrowL - th) / 2;
int lowMargin = 6;
if (TurnType.C == turnType.getValue()) {
int h = (int) (ha - hpartArrowL - 16);
pathForTurn.rMoveTo(th, 0);
pathForTurn.rLineTo(0, -h);
pathForTurn.rLineTo(hpartArrowL, 0);
pathForTurn.rLineTo(-harrowL / 2, -harrowL / 2); // center
pathForTurn.rLineTo(-harrowL / 2, harrowL / 2);
pathForTurn.rLineTo(hpartArrowL, 0);
pathForTurn.rLineTo(0, h);
TurnVariables tv = new TurnVariables(false, 0, 0, wa, ha, 1.5f);
pathForTurn.moveTo(wa / 2 + tv.widthStepIn / 2, ha - lowMargin);
tv.drawTriangle(pathForTurn);
pathForTurn.lineTo(wa / 2 - tv.widthStepIn / 2, ha - lowMargin);
} else if (TurnType.OFFR == turnType.getValue()){
TurnVariables tv = new TurnVariables(false, 0, 0, wa, ha, 1.5f);
float rightX = wa / 2 + tv.widthStepIn / 2;
float leftX = wa / 2 - tv.widthStepIn / 2;
int step = 7;
pathForTurn.moveTo(rightX, ha - lowMargin);
pathForTurn.rLineTo(0, -step);
pathForTurn.rLineTo(-tv.widthStepIn , 0);
pathForTurn.rLineTo(0 , step);
pathForTurn.rLineTo(tv.widthStepIn, 0);
pathForTurn.moveTo(rightX, ha - 2 * lowMargin - step);
pathForTurn.rLineTo(0, -step);
pathForTurn.rLineTo(-tv.widthStepIn , 0);
pathForTurn.rLineTo(0 , step);
pathForTurn.rLineTo(tv.widthStepIn, 0);
pathForTurn.moveTo(rightX, ha - 3 * lowMargin - 2 * step);
pathForTurn.rLineTo(0, -step);
pathForTurn.rLineTo(-tv.widthStepIn , 0);
pathForTurn.rLineTo(0 , step);
pathForTurn.rLineTo(tv.widthStepIn, 0);
pathForTurn.moveTo(rightX, ha - 4 * lowMargin - 3 * step);
tv.drawTriangle(pathForTurn);
pathForTurn.lineTo(leftX, ha - 4 * lowMargin - 3 * step);
} else if (TurnType.TR == turnType.getValue()|| TurnType.TL == turnType.getValue()) {
int b = TurnType.TR == turnType.getValue()? 1 : -1;
float quadShiftX = 18;
float quadShiftY = 18;
int wl = 10; // width
int h = (int) (ha - quadShiftY - harrowL + hpartArrowL - 5);
int sl = wl + th / 2;
TurnVariables tv = new TurnVariables(b != 1, b == 1 ? 90 : -90, 0, wa, ha / 2, 1.5f);
float centerCurveX = wa / 2 + b * 4;
float centerCurveY = ha / 2;
// calculated
float h = centerCurveY - lowMargin;
float r = tv.cy - tv.widthStepIn / 2;
float centerLineX = centerCurveX - b * (r + tv.widthStepIn / 2);
RectF innerOval = new RectF(centerCurveX - r, centerCurveY - r, centerCurveX + r, centerCurveY + r);
RectF outerOval = new RectF(innerOval);
outerOval.inset(-tv.widthStepIn, -tv.widthStepIn);
pathForTurn.rMoveTo(-b * sl, 0);
pathForTurn.moveTo(centerLineX + b * tv.widthStepIn / 2, ha - lowMargin);
pathForTurn.rLineTo(0, -h);
pathForTurn.rQuadTo(0, -quadShiftY, b * quadShiftX, -quadShiftY);
pathForTurn.rLineTo(b * wl, 0);
pathForTurn.rLineTo(0, hpartArrowL);
pathForTurn.rLineTo(b * harrowL / 2, -harrowL / 2); // center
pathForTurn.rLineTo(-b * harrowL / 2, -harrowL / 2);
pathForTurn.rLineTo(0, hpartArrowL);
pathForTurn.rLineTo(-b * wl, 0);
pathForTurn.rQuadTo(-b * (quadShiftX + th), 0, -b * (quadShiftX + th), quadShiftY + th);
pathForTurn.arcTo(innerOval, b == 1 ? -180 : 0, b* 90);
tv.drawTriangle(pathForTurn);
pathForTurn.arcTo(outerOval, -90, - b *90);
pathForTurn.rLineTo(0, h);
} else if (TurnType.KL == turnType.getValue() || TurnType.KR == turnType.getValue()) {
int b = TurnType.KR == turnType.getValue()? 1 : -1;
float quadShiftX = 14;
float quadShiftY = 14;
th = 10;
spartArrowL = (float) ((sarrowL - th / Math.sqrt(2)) / 2);
hpartArrowL = (float) (harrowL - th) / 2;
int h = 12;
int lh = 15;
int sl = th / 2;
pathForTurn.rMoveTo(-b * (sl + 10), 0);
pathForTurn.rLineTo(0, -lh);
// 1st arc
pathForTurn.rQuadTo(0, -quadShiftY, b * quadShiftX, -quadShiftY);
// 2nd arc
pathForTurn.rQuadTo(b * quadShiftX, 0, b * quadShiftX, -quadShiftY);
// center
pathForTurn.rLineTo(0, -h);
pathForTurn.rLineTo(b*hpartArrowL, 0);
pathForTurn.rLineTo(-b*harrowL / 2, -harrowL / 2); // center
pathForTurn.rLineTo(-b*harrowL / 2, harrowL / 2);
pathForTurn.rLineTo(b*hpartArrowL, 0);
pathForTurn.rLineTo(0, h );
// 2nd arc
pathForTurn.rQuadTo(0, quadShiftY - th, -b * (quadShiftX - th), quadShiftY- th);
//1st arc
pathForTurn.rQuadTo(-b * (quadShiftX + th), 0, -b * (quadShiftX + th ), quadShiftY + th);
pathForTurn.rLineTo(0, lh );
} else if (TurnType.TSLR == turnType.getValue() || TurnType.TSLL == turnType.getValue()) {
int b = TurnType.TSLR == turnType.getValue() ? 1 : -1;
int h = 24;
int quadShiftY = 22;
float quadShiftX = (float) (quadShiftY / (1 + Math.sqrt(2)));
float nQuadShiftX = (sarrowL - 2 * spartArrowL) - quadShiftX - th;
float nQuadShifty = quadShiftY + (sarrowL - 2 * spartArrowL);
TurnVariables tv = new TurnVariables(b != 1, b == 1 ? 45 : -45, 0, wa, ha, 1.5f);
tv.cx -= b * 7;
float centerBottomX = wa / 2 - b * 6;
float centerCurveY = ha / 2 + 8;
float centerCurveX = centerBottomX + b * (wa / 2);
// calculated
float rx1 = Math.abs(centerCurveX - centerBottomX) - tv.widthStepIn / 2;
float rx2 = Math.abs(centerCurveX - centerBottomX) + tv.widthStepIn / 2;
double t1 = Math.acos(Math.abs(tv.getTriangle1X() - centerCurveX) / rx1) ;
float rb1 = (float) (Math.abs(tv.getTriangle1Y() - centerCurveY) / Math.sin(t1));
float ellipseAngle1 = (float) (t1 / Math.PI * 180);
double t2 = Math.acos(Math.abs(tv.getTriangle2X() - centerCurveX) / rx2) ;
float rb2 = (float) (Math.abs(tv.getTriangle2Y() - centerCurveY) / Math.sin(t2));
float ellipseAngle2 = (float) (t2 / Math.PI * 180);
pathForTurn.rMoveTo(-b * 4, 0);
pathForTurn.rLineTo(0, -h /* + partArrowL */);
pathForTurn.rQuadTo(0, -quadShiftY + quadShiftX /*- partArrowL*/, b * quadShiftX, -quadShiftY /*- partArrowL*/);
pathForTurn.rLineTo(b * spartArrowL, spartArrowL);
pathForTurn.rLineTo(0, -sarrowL); // center
pathForTurn.rLineTo(-b * sarrowL, 0);
pathForTurn.rLineTo(b * spartArrowL, spartArrowL);
pathForTurn.rQuadTo(b * nQuadShiftX, -nQuadShiftX, b * nQuadShiftX, nQuadShifty);
pathForTurn.rLineTo(0, h);
RectF innerOval = new RectF(centerCurveX - rx1, centerCurveY - rb1, centerCurveX + rx1, centerCurveY + rb1);
RectF outerOval = new RectF(centerCurveX - rx2, centerCurveY - rb2, centerCurveX + rx2, centerCurveY + rb2);
pathForTurn.moveTo(centerBottomX + b * tv.widthStepIn / 2, ha - lowMargin);
pathForTurn.arcTo(innerOval, -90 - b * 90, b * (ellipseAngle1));
tv.drawTriangle(pathForTurn);
pathForTurn.arcTo(outerOval, -90 - b * (90 - (ellipseAngle2)), -b * (ellipseAngle2));
pathForTurn.lineTo(centerBottomX - b * tv.widthStepIn / 2, ha - lowMargin);
} else if (TurnType.TSHR == turnType.getValue() || TurnType.TSHL == turnType.getValue()) {
int b = TurnType.TSHR == turnType.getValue() ? 1 : -1;
int h = 28;
float quadShiftX = 22;
int sh = 10;
float quadShiftY = -(float) (quadShiftX / (1 + Math.sqrt(2)));
float nQuadShiftX = -(sarrowL - 2 * spartArrowL) - quadShiftX - th;
float nQuadShiftY = -quadShiftY + (sarrowL - 2 * spartArrowL);
pathForTurn.rMoveTo(-b * sh, 0);
pathForTurn.rLineTo(0, -h);
pathForTurn.rQuadTo(0, -(quadShiftX - quadShiftY), b * quadShiftX, quadShiftY);
pathForTurn.rLineTo(-b * spartArrowL, spartArrowL);
pathForTurn.rLineTo(b * sarrowL, 0); // center
pathForTurn.rLineTo(0, -sarrowL);
pathForTurn.rLineTo(-b * spartArrowL, spartArrowL);
pathForTurn.rCubicTo(b * nQuadShiftX / 2, nQuadShiftX / 2, b * nQuadShiftX, nQuadShiftX / 2, b * nQuadShiftX, nQuadShiftY);
pathForTurn.rLineTo(0, h);
float centerCircleY = ha / 4;
float centerCircleX = wa / 2 - b * (wa / 5);
TurnVariables tv = new TurnVariables(b != 1, b == 1 ? 135 : -135, 0, wa, ha, 1.5f);
// calculated
float angle = 45;
float r = tv.widthStepIn / 2;
tv.cx = centerCircleX;
tv.cy = centerCircleY;
RectF innerOval = new RectF(centerCircleX - r, centerCircleY - r, centerCircleX + r, centerCircleY + r);
pathForTurn.moveTo(centerCircleX + b * tv.widthStepIn / 2, ha - lowMargin);
pathForTurn.lineTo(centerCircleX + b * tv.widthStepIn / 2, (float) (centerCircleY +
2 * r));
// pathForTurn.arcTo(innerOval, -90 - b * 90, b * 45);
tv.drawTriangle(pathForTurn);
// pathForTurn.lineTo(centerCircleX - b * tv.widthStepIn / 2, (float) (centerCircleY - 2 *r));
pathForTurn.arcTo(innerOval, -90 + b * angle, - b * (90 + angle));
pathForTurn.lineTo(centerCircleX - b * tv.widthStepIn / 2, ha - lowMargin);
} else if(TurnType.TU == turnType.getValue() || TurnType.TRU == turnType.getValue()) {
int h = 40;
// right left
int b = TurnType.TU == turnType.getValue() ? 1 : -1;
float quadShiftX = 10; // 13
float quadShiftY = 10; // 13
int sm = 10;
int b = TurnType.TU == turnType.getValue() ? -1 : 1;
float radius = 16;
float centerRadiusY = ha / 2 - 10;
float extraMarginBottom = 5;
TurnVariables tv = new TurnVariables(b != 1, 180, 0, wa, ha, 1.5f);
// calculated
float centerRadiusX = wa / 2;
tv.cx = centerRadiusX + b * radius;
tv.cy = centerRadiusY - extraMarginBottom;
lowMargin += extraMarginBottom;
tv.rot = 0;
pathForTurn.rMoveTo(b * 28, 0);
pathForTurn.rLineTo(0, -h);
pathForTurn.rQuadTo(0, -(quadShiftY+th), -b * (quadShiftX+th), -(quadShiftY+th));
pathForTurn.rQuadTo(-b * (quadShiftX+th), 0, -b * (quadShiftX+th), (quadShiftY+th));
pathForTurn.rLineTo(0, sm);
float r = radius - tv.widthStepIn / 2;
float r2 = radius + tv.widthStepIn / 2;
RectF innerOval = new RectF(centerRadiusX - r, centerRadiusY - r, centerRadiusX + r, centerRadiusY + r);
RectF outerOval = new RectF(centerRadiusX - r2, centerRadiusY - r2, centerRadiusX + r2, centerRadiusY + r2);
pathForTurn.rLineTo(-b * hpartArrowL, 0);
pathForTurn.rLineTo(b * harrowL/2, harrowL/2); // center
pathForTurn.rLineTo(b * harrowL/2, -harrowL/2);
pathForTurn.rLineTo(-b *hpartArrowL, 0);
pathForTurn.rLineTo(0, -sm);
pathForTurn.rQuadTo(0, -quadShiftX, b *quadShiftX, -quadShiftY);
pathForTurn.rQuadTo(b * quadShiftX, 0, b * quadShiftX, quadShiftY);
pathForTurn.rLineTo(0, h);
} else if (TurnType.OFFR == turnType.getValue()){
int h = (int) (ha - hpartArrowL - 16);
pathForTurn.rMoveTo(th, 0); //12 0
//first square
pathForTurn.rLineTo(0, -h / 4); //0 -7
pathForTurn.rLineTo(-th, 0); //-12 0
pathForTurn.rLineTo(0, h / 4); //0 7
pathForTurn.rLineTo(th, 0); //12 0
pathForTurn.rMoveTo(0, -h / 2); //12 0
//second square
pathForTurn.rLineTo(0, -h / 4); //0 -7
pathForTurn.rLineTo(-th, 0); //-12 0
pathForTurn.rLineTo(0, h / 4); //0 7
pathForTurn.rLineTo(th, 0); //12 0
pathForTurn.rMoveTo(0, -h / 2 + 1); //31 0
//arrow
pathForTurn.rLineTo(hpartArrowL, 0); //9 0
pathForTurn.rLineTo(-harrowL / 2, -harrowL / 2); // center -15 -15
pathForTurn.rLineTo(-harrowL / 2, harrowL / 2); // -15 15
pathForTurn.rLineTo(hpartArrowL + th, 0); //9 0
} else if(turnType != null && turnType.isRoundAbout() && USE_NEW_RNDB) {
pathForTurn.moveTo(centerRadiusX - b * (radius - tv.widthStepIn / 2), ha - lowMargin);
pathForTurn.lineTo(centerRadiusX - b * (radius - tv.widthStepIn / 2), centerRadiusY);
pathForTurn.arcTo(innerOval, -90 - b * 90, b * 180);
tv.drawTriangle(pathForTurn);
pathForTurn.arcTo(outerOval, -90 + b * 90, -b * 180);
pathForTurn.lineTo(centerRadiusX - b * (radius + tv.widthStepIn / 2), ha - lowMargin);
} else if (TurnType.KL == turnType.getValue() || TurnType.KR == turnType.getValue()) {
int b = TurnType.KR == turnType.getValue()? 1 : -1;
float shiftX = 8;
float firstH = 18;
float secondH = 20;
TurnVariables tv = new TurnVariables(false, 0, 0, wa, ha, 1.5f);
// calculated
tv.cx += b * shiftX;
pathForTurn.moveTo(wa / 2 + tv.widthStepIn / 2 - b * shiftX, ha - lowMargin);
pathForTurn.lineTo(wa / 2 + tv.widthStepIn / 2 - b * shiftX, ha - lowMargin - firstH);
// pathForTurn.lineTo(wa / 2 + tv.widthStepIn / 2 + b * shiftX, ha - lowMargin - firstH - secondH);
pathForTurn.cubicTo(
wa / 2 + tv.widthStepIn / 2 - b * shiftX, ha - lowMargin - firstH - secondH / 2 + b * 3,
wa / 2 + tv.widthStepIn / 2 + b * shiftX, ha - lowMargin - firstH - secondH / 2 + b * 3,
wa / 2 + tv.widthStepIn / 2 + b * shiftX, ha - lowMargin - firstH - secondH);
tv.drawTriangle(pathForTurn);
pathForTurn.lineTo(wa / 2 - tv.widthStepIn / 2 + b * shiftX, ha - lowMargin - firstH - secondH);
pathForTurn.cubicTo(
wa / 2 - tv.widthStepIn / 2 + b * shiftX, ha - lowMargin - firstH - secondH / 2 - b * 2,
wa / 2 - tv.widthStepIn / 2 - b * shiftX, ha - lowMargin - firstH - secondH / 2 - b * 2,
wa / 2 - tv.widthStepIn / 2 - b * shiftX, ha - lowMargin - firstH );
// pathForTurn.lineTo(wa / 2 - tv.widthStepIn / 2 - b * shiftX, ha - lowMargin - firstH);
pathForTurn.lineTo(wa / 2 - tv.widthStepIn / 2 - b * shiftX, ha - lowMargin);
} else if(turnType != null && turnType.isRoundAbout() ) {
int out = turnType.getExitOut();
boolean leftSide = turnType.isLeftSide();
float radEndOfArrow = 44;
float radInnerCircle = 10;
float radOuterCircle = radInnerCircle + 8;
float radBottom = radOuterCircle + 10;
float radStepInter = radOuterCircle + 6;
float radArrowTriangle1 = radOuterCircle + 7;
float radArrowTriangle2 = radOuterCircle + 8;
float widthStepIn = 8;
float widthStepInter = 6;
float widthArrow = 22;
double dfL = (leftSide ? 1 : -1) * Math.asin(widthStepIn / (2.0 * radBottom));
double dfAr2 = (leftSide ? 1 : -1) * Math.asin(widthArrow / (2.0 * radArrowTriangle2));
double dfStepInter = (leftSide ? 1 : -1) * Math.asin(widthStepInter / radStepInter);
double dfAr = Math.asin(radBottom * Math.sin(dfL) / radArrowTriangle1);
double dfOut = Math.asin(radBottom * Math.sin(dfL) / radOuterCircle);
double dfStepOut = Math.asin(radStepInter * Math.sin(dfStepInter) / radOuterCircle);
double dfIn = Math.asin(radBottom * Math.sin(dfL) / radInnerCircle);
double minDelta = Math.abs(dfIn * 2 / Math.PI * 180 ) + 2;
boolean showSteps = SHOW_STEPS && !mini;
// System.out.println("Angle " + dfL + " " + dfOut + " " + dfIn + " " + minDelta + " ");
double rot = alignRotation(turnType.getTurnAngle(), leftSide, minDelta, out) / 180 * Math.PI;
float cx = wa / 2 ;
float cy = ha / 2 ;
// align center
float potentialArrowEndX = (float) (Math.sin(rot) * radEndOfArrow);
float potentialArrowEndY = (float) (Math.cos(rot) * radEndOfArrow);
if (potentialArrowEndX > cx) {
cx = potentialArrowEndX;
} else if (potentialArrowEndX < -cx) {
cx = 2 * cx + potentialArrowEndX;
}
if(potentialArrowEndY > cy) {
cy = 2 * cy - potentialArrowEndY;
} else if(potentialArrowEndY < -cy) {
cy = -potentialArrowEndY;
}
TurnVariables tv = new TurnVariables(leftSide, turnType.getTurnAngle(), out, wa, ha, 1);
if(center != null) {
center.set(cx, cy);
center.set(tv.cx, tv.cy);
}
RectF qrOut = new RectF(cx - radOuterCircle, cy - radOuterCircle, cx + radOuterCircle, cy + radOuterCircle);
RectF qrIn = new RectF(cx - radInnerCircle, cy - radInnerCircle, cx + radInnerCircle, cy + radInnerCircle);
RectF qrOut = new RectF(tv.cx - tv.radOuterCircle, tv.cy - tv.radOuterCircle,
tv.cx + tv.radOuterCircle, tv.cy + tv.radOuterCircle);
RectF qrIn = new RectF(tv.cx - tv.radInnerCircle, tv.cy - tv.radInnerCircle, tv.cx + tv.radInnerCircle, tv.cy + tv.radInnerCircle);
if(outlay != null && !mini) {
outlay.addArc(qrOut, 0, 360);
outlay.addArc(qrIn, 0, -360);
@ -245,14 +307,14 @@ public class TurnPathHelper {
}
// move to bottom ring
pathForTurn.moveTo(getProjX(dfOut, cx, cy, radOuterCircle), getProjY(dfOut, cx, cy, radOuterCircle));
pathForTurn.moveTo(tv.getProjX(tv.dfOut, tv.radOuterCircle), tv.getProjY(tv.dfOut, tv.radOuterCircle));
if (out <= 1) {
showSteps = false;
}
if (showSteps && outlay != null) {
double totalStepInter = (out - 1) * dfStepOut;
double st = (rot - 2 * dfOut - totalStepInter) / out;
if ((rot > 0) != (st > 0)) {
double totalStepInter = (out - 1) * tv.dfStepOut;
double st = (tv.rot - 2 * tv.dfOut - totalStepInter) / out;
if ((tv.rot > 0) != (st > 0)) {
showSteps = false;
}
if (Math.abs(st) < Math.PI / 60) {
@ -261,126 +323,40 @@ public class TurnPathHelper {
// double st = (rot - 2 * dfOut ) / (2 * out - 1);
// dfStepOut = st;
if (showSteps) {
outlay.moveTo(getProjX(dfOut, cx, cy, radOuterCircle), getProjY(dfOut, cx, cy, radOuterCircle));
outlay.moveTo(tv.getProjX(tv.dfOut, tv.radOuterCircle), tv.getProjY(tv.dfOut, tv.radOuterCircle));
for (int i = 0; i < out - 1; i++) {
outlay.arcTo(qrOut, startArcAngle(dfOut + i * (st + dfStepOut)), sweepArcAngle(st));
outlay.arcTo(qrOut, startArcAngle(tv.dfOut + i * (st + tv.dfStepOut)), sweepArcAngle(st));
arcLineTo(outlay,
dfOut + (i + 1) * (st + dfStepOut) - dfStepOut / 2 - dfStepInter / 2, cx, cy, radStepInter);
arcLineTo(outlay, dfOut + (i + 1) * (st + dfStepOut) - dfStepOut / 2 + dfStepInter / 2, cx, cy, radStepInter);
arcLineTo(outlay, dfOut + (i + 1) * (st + dfStepOut), cx, cy, radOuterCircle);
tv.dfOut + (i + 1) * (st + tv.dfStepOut) - tv.dfStepOut / 2 - tv.dfStepInter / 2,
tv.cx, tv.cy, tv.radStepInter);
arcLineTo(outlay, tv.dfOut + (i + 1) * (st + tv.dfStepOut) - tv.dfStepOut / 2 + tv.dfStepInter / 2,
tv.cx, tv.cy, tv.radStepInter);
arcLineTo(outlay, tv.dfOut + (i + 1) * (st + tv.dfStepOut), tv.cx, tv.cy, tv.radOuterCircle);
// pathForTurn.arcTo(qr1, startArcAngle(dfOut), sweepArcAngle(rot - dfOut - dfOut));
}
outlay.arcTo(qrOut, startArcAngle(rot - dfOut - st), sweepArcAngle(st));
outlay.arcTo(qrOut, startArcAngle(tv.rot - tv.dfOut - st), sweepArcAngle(st));
// swipe back
arcLineTo(outlay, rot - dfIn, cx, cy, radInnerCircle);
outlay.arcTo(qrIn, startArcAngle(rot - dfIn), -sweepArcAngle(rot - dfIn - dfIn));
arcLineTo(outlay, tv.rot - tv.dfIn, tv.cx, tv.cy, tv.radInnerCircle);
outlay.arcTo(qrIn, startArcAngle(tv.rot - tv.dfIn), -sweepArcAngle(tv.rot - tv.dfIn - tv.dfIn));
}
}
// if(!showSteps) {
// // arc
// pathForTurn.arcTo(qrOut, startArcAngle(dfOut), sweepArcAngle(rot - dfOut - dfOut));
// }
pathForTurn.arcTo(qrOut, startArcAngle(dfOut), sweepArcAngle(rot - dfOut - dfOut));
pathForTurn.arcTo(qrOut, startArcAngle(tv.dfOut), sweepArcAngle(tv.rot - tv.dfOut - tv.dfOut));
// up from arc
arcLineTo(pathForTurn, rot - dfAr, cx, cy, radArrowTriangle1);
// left triangle
// arcLineTo(pathForTurn, rot - dfAr2, cx, cy, radAr2); // 1.
// arcQuadTo(pathForTurn, rot - dfAr2, radAr2, rot, radArrow, 0.9f, cx, cy); // 2.
arcQuadTo(pathForTurn, rot - dfAr, radArrowTriangle1, rot - dfAr2, radArrowTriangle2, rot, radEndOfArrow, 4.5f, cx, cy); // 3.
// arcLineTo(pathForTurn, rot, cx, cy, radArrow); // 1.
arcQuadTo(pathForTurn, rot - dfAr2, radArrowTriangle2, rot, radEndOfArrow, rot + dfAr2, radArrowTriangle2, 4.5f, cx, cy);
// right triangle
// arcLineTo(pathForTurn, rot + dfAr2, cx, cy, radAr2); // 1.
arcQuadTo(pathForTurn, rot, radEndOfArrow, rot + dfAr2, radArrowTriangle2, rot + dfAr, radArrowTriangle1, 4.5f, cx, cy);
arcLineTo(pathForTurn, rot + dfAr, cx, cy, radArrowTriangle1);
tv.drawTriangle(pathForTurn);
// down to arc
arcLineTo(pathForTurn, rot + dfIn, cx, cy, radInnerCircle);
arcLineTo(pathForTurn, tv.rot + tv.dfIn, tv.cx, tv.cy, tv.radInnerCircle);
// arc
pathForTurn.arcTo(qrIn, startArcAngle(rot + dfIn), sweepArcAngle(-rot - dfIn - dfIn));
pathForTurn.arcTo(qrIn, startArcAngle(tv.rot + tv.dfIn), sweepArcAngle(-tv.rot - tv.dfIn - tv.dfIn));
// down
arcLineTo(pathForTurn, -dfL, cx, cy, radBottom);
arcLineTo(pathForTurn, -tv.dfL, tv.cx, tv.cy, tv.radBottom);
// left
arcLineTo(pathForTurn, dfL, cx, cy, radBottom);
arcLineTo(pathForTurn, tv.dfL, tv.cx, tv.cy, tv.radBottom);
} else if (turnType != null && turnType.isRoundAbout()) {
float t = turnType.getTurnAngle();
boolean leftSide = turnType.isLeftSide();
double minTurn = 25;
if (t >= 170 && t < 215) {
t = 215;
} else if (t > 155 && t < 170) {
t = 155;
}
float sweepAngle = (t - 360) - 180;
if (sweepAngle < -360) {
sweepAngle += 360;
}
if(leftSide && sweepAngle < 0) {
sweepAngle += 360;
}
float r1 = ha / 3f - 1;
float r2 = r1 - 9;
float angleToRot = leftSide ? -0.3f : 0.3f;
int cx = wa / 2 ;
int cy = ha / 2 - 2;
if (leftSide) {
pathForTurn.moveTo(cx - 8, ha - 1);
pathForTurn.lineTo(cx - 8, cy + r1);
} else {
pathForTurn.moveTo(cx, ha - 1);
pathForTurn.lineTo(cx, cy + r1);
}
RectF r = new RectF(cx - r1, cy - r1, cx + r1, cy + r1);
int out = turnType.getExitOut();
if (out < 1) {
out = 1;
}
float prev = 90;
float init = 90;
float step = sweepAngle / out;
for (int i = 1; i <= out; i++) {
float to = step * i;
if (i == out) {
pathForTurn.arcTo(r, prev, to - prev + init);
} else {
float tsRad = (float) ((to - step / 8 + 180) * Math.PI / 180f);
float tsRad2 = (float) ((to + step / 8 + 180) * Math.PI / 180f);
pathForTurn.arcTo(r, prev, to - step / 6 - prev + init );
pathForTurn.lineTo(cx + (r1 + 10) * (float) Math.sin(tsRad), cy - (r1 + 10) * (float) Math.cos(tsRad));
pathForTurn.lineTo(cx + (r1 + 10) * (float) Math.sin(tsRad2), cy - (r1 + 10) * (float) Math.cos(tsRad2));
// not necessary for next arcTo
//pathForTurn.lineTo(cx + (r1 + 0) * (float) Math.sin(tsRad2), cy - (r1 + 0) * (float) Math.cos(tsRad2));
prev = to + step / 6 + init;
}
}
float angleRad = (float) ((180 + sweepAngle) * Math.PI / 180f);
pathForTurn.lineTo(cx + (r1 + 4) * (float) Math.sin(angleRad), cy - (r1 + 4) * (float) Math.cos(angleRad));
pathForTurn.lineTo(cx + (r1 + 6) * (float) Math.sin(angleRad + angleToRot/2), cy - (r1 + 6) * (float) Math.cos(angleRad + angleToRot/2));
pathForTurn.lineTo(cx + (r1 + 14) * (float) Math.sin(angleRad - angleToRot/2), cy - (r1 + 12) * (float) Math.cos(angleRad - angleToRot/2));
pathForTurn.lineTo(cx + (r1 + 6) * (float) Math.sin(angleRad - 3*angleToRot/2), cy - (r1 + 6) * (float) Math.cos(angleRad - 3*angleToRot/2));
pathForTurn.lineTo(cx + (r1 + 4) * (float) Math.sin(angleRad - angleToRot), cy - (r1 + 4) * (float) Math.cos(angleRad - angleToRot));
pathForTurn.lineTo(cx + r2 * (float) Math.sin(angleRad - angleToRot), cy - r2 * (float) Math.cos(angleRad - angleToRot));
r.set(cx - r2, cy - r2, cx + r2, cy + r2);
pathForTurn.arcTo(r, 360 + sweepAngle + 90, -sweepAngle);
if (leftSide) {
pathForTurn.lineTo(cx, cy + r2);
pathForTurn.lineTo(cx, ha - 1);
} else {
pathForTurn.lineTo(cx - 8, cy + r2);
pathForTurn.lineTo(cx - 8, ha - 1);
}
pathForTurn.close();
}
pathForTurn.close();
if(transform != null){