package net.osmand.util; import java.util.Collection; import java.util.List; import gnu.trove.list.TLongList; import net.osmand.data.LatLon; import net.osmand.osm.edit.Node; import net.osmand.osm.edit.OsmMapUtils; public class MapAlgorithms { public static boolean isClockwiseWay(TLongList c) { if (c.size() == 0) { return true; } // calculate middle Y long mask = 0xffffffffL; long middleY = 0; for (int i = 0; i < c.size(); i++) { middleY = middleY + (long)(c.get(i) & mask); } middleY = middleY /(long) c.size(); double clockwiseSum = 0; boolean firstDirectionUp = false; int previousX = Integer.MIN_VALUE; int firstX = Integer.MIN_VALUE; int prevX = (int) (c.get(0) >> 32); int prevY = (int) (c.get(0) & mask); for (int i = 1; i < c.size(); i++) { int x = (int) (c.get(i) >> 32); int y = (int) (c.get(i) & mask); int rX = ray_intersect_x(prevX, prevY, x, y, (int) middleY); if (rX != Integer.MIN_VALUE) { boolean skipSameSide = (y <= middleY) == (prevY <= middleY); if (skipSameSide) { continue; } boolean directionUp = prevY >= middleY; if (firstX == Integer.MIN_VALUE) { firstDirectionUp = directionUp; firstX = rX; } else { boolean clockwise = (!directionUp) == (previousX < rX); if (clockwise) { clockwiseSum += Math.abs(previousX - rX); } else { clockwiseSum -= Math.abs(previousX - rX); } } previousX = rX; } prevX = x; prevY = y; } if (firstX != Integer.MIN_VALUE) { boolean clockwise = (!firstDirectionUp) == (previousX < firstX); if (clockwise) { clockwiseSum += Math.abs(previousX - firstX); } else { clockwiseSum -= Math.abs(previousX - firstX); } } return clockwiseSum >= 0; } public static int ray_intersect_x(int prevX, int prevY, int x, int y, int middleY) { // prev node above line // x,y node below line if (prevY > y) { int tx = x; int ty = y; x = prevX; y = prevY; prevX = tx; prevY = ty; } if (y == middleY || prevY == middleY) { middleY -= 1; } if (prevY > middleY || y < middleY) { return Integer.MIN_VALUE; } else { if (y == prevY) { // the node on the boundary !!! return x; } // that tested on all cases (left/right) double rx = x + ((double) middleY - y) * ((double) x - prevX) / (((double) y - prevY)); return (int) rx; } } private static long combine2Points(int x, int y) { return (((long) x ) <<32) | ((long)y ); } /** * outx,outy are the coordinates out of the box * inx,iny are the coordinates from the box (NOT IMPORTANT in/out, just one should be in second out) * @return -1 if there is no instersection or x<<32 | y */ public static long calculateIntersection(int inx, int iny, int outx, int outy, int leftX, int rightX, int bottomY, int topY) { int by = -1; int bx = -1; // firstly try to search if the line goes in if (outy < topY && iny >= topY) { int tx = (int) (outx + ((double) (inx - outx) * (topY - outy)) / (iny - outy)); if (leftX <= tx && tx <= rightX) { bx = tx; by = topY; return combine2Points(bx, by); } } if (outy > bottomY && iny <= bottomY) { int tx = (int) (outx + ((double) (inx - outx) * (outy - bottomY)) / (outy - iny)); if (leftX <= tx && tx <= rightX) { bx = tx; by = bottomY; return combine2Points(bx, by); } } if (outx < leftX && inx >= leftX) { int ty = (int) (outy + ((double) (iny - outy) * (leftX - outx)) / (inx - outx)); if (ty >= topY && ty <= bottomY) { by = ty; bx = leftX; return combine2Points(bx, by); } } if (outx > rightX && inx <= rightX) { int ty = (int) (outy + ((double) (iny - outy) * (outx - rightX)) / (outx - inx)); if (ty >= topY && ty <= bottomY) { by = ty; bx = rightX; return combine2Points(bx, by); } } // try to search if point goes out if (outy > topY && iny <= topY) { int tx = (int) (outx + ((double) (inx - outx) * (topY - outy)) / (iny - outy)); if (leftX <= tx && tx <= rightX) { bx = tx; by = topY; return combine2Points(bx, by); } } if (outy < bottomY && iny >= bottomY) { int tx = (int) (outx + ((double) (inx - outx) * (outy - bottomY)) / (outy - iny)); if (leftX <= tx && tx <= rightX) { bx = tx; by = bottomY; return combine2Points(bx, by); } } if (outx > leftX && inx <= leftX) { int ty = (int) (outy + ((double) (iny - outy) * (leftX - outx)) / (inx - outx)); if (ty >= topY && ty <= bottomY) { by = ty; bx = leftX; return combine2Points(bx, by); } } if (outx < rightX && inx >= rightX) { int ty = (int) (outy + ((double) (iny - outy) * (outx - rightX)) / (outx - inx)); if (ty >= topY && ty <= bottomY) { by = ty; bx = rightX; return combine2Points(bx, by); } } if (outx == rightX || outx == leftX || outy == topY || outy == bottomY) { bx = outx; by = outy; //return (((long) bx) << 32) | ((long) by); } return -1L; } /** * return true if the line segment [a,b] intersects [c,d] * @param a point 1 * @param b point 2 * @param c point 3 * @param d point 4 * @return true if the line segment [a,b] intersects [c,d] */ public static boolean linesIntersect(LatLon a, LatLon b, LatLon c, LatLon d){ return linesIntersect( a.getLatitude(), a.getLongitude(), b.getLatitude(), b.getLongitude(), c.getLatitude(), c.getLongitude(), d.getLatitude(), d.getLongitude()); } /** * Return true if two line segments intersect inside the segment * * source: http://www.java-gaming.org/index.php?topic=22590.0 * @param x1 line 1 point 1 latitude * @param y1 line 1 point 1 longitude * @param x2 line 1 point 2 latitude * @param y2 line 1 point 2 longitude * @param x3 line 2 point 1 latitude * @param y3 line 2 point 1 longitude * @param x4 line 2 point 2 latitude * @param y4 line 2 point 2 longitude * @return */ public static boolean linesIntersect(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4){ // Return false if either of the lines have zero length if (x1 == x2 && y1 == y2 || x3 == x4 && y3 == y4){ return false; } // Fastest method, based on Franklin Antonio's "Faster Line Segment Intersection" topic "in Graphics Gems III" book (http://www.graphicsgems.org/) double ax = x2-x1; double ay = y2-y1; double bx = x3-x4; double by = y3-y4; double cx = x1-x3; double cy = y1-y3; double alphaNumerator = by*cx - bx*cy; double commonDenominator = ay*bx - ax*by; if (commonDenominator > 0){ if (alphaNumerator < 0 || alphaNumerator > commonDenominator){ return false; } }else if (commonDenominator < 0){ if (alphaNumerator > 0 || alphaNumerator < commonDenominator){ return false; } } double betaNumerator = ax*cy - ay*cx; if (commonDenominator > 0){ if (betaNumerator < 0 || betaNumerator > commonDenominator){ return false; } }else if (commonDenominator < 0){ if (betaNumerator > 0 || betaNumerator < commonDenominator){ return false; } } if (commonDenominator == 0){ // This code wasn't in Franklin Antonio's method. It was added by Keith Woodward. // The lines are parallel. // Check if they're collinear. double y3LessY1 = y3-y1; double collinearityTestForP3 = x1*(y2-y3) + x2*(y3LessY1) + x3*(y1-y2); // see http://mathworld.wolfram.com/Collinear.html // If p3 is collinear with p1 and p2 then p4 will also be collinear, since p1-p2 is parallel with p3-p4 if (collinearityTestForP3 == 0){ // The lines are collinear. Now check if they overlap. if (x1 >= x3 && x1 <= x4 || x1 <= x3 && x1 >= x4 || x2 >= x3 && x2 <= x4 || x2 <= x3 && x2 >= x4 || x3 >= x1 && x3 <= x2 || x3 <= x1 && x3 >= x2){ if (y1 >= y3 && y1 <= y4 || y1 <= y3 && y1 >= y4 || y2 >= y3 && y2 <= y4 || y2 <= y3 && y2 >= y4 || y3 >= y1 && y3 <= y2 || y3 <= y1 && y3 >= y2){ return true; } } } return false; } return true; } public static boolean containsPoint(Collection polyNodes, double latitude, double longitude){ return countIntersections(polyNodes, latitude, longitude) % 2 == 1; } /** * count the intersections when going from lat, lon to outside the ring * @param polyNodes2 */ private static int countIntersections(Collection polyNodes, double latitude, double longitude) { int intersections = 0; if (polyNodes.size() == 0) return 0; Node prev = null; Node first = null; Node last = null; for(Node n : polyNodes) { if(prev == null) { prev = n; first = prev; continue; } if(n == null) { continue; } last = n; if (OsmMapUtils.ray_intersect_lon(prev, n, latitude, longitude) != -360.0d) { intersections++; } prev = n; } if(first == null || last == null) { return 0; } // special handling, also count first and last, might not be closed, but // we want this! if (OsmMapUtils.ray_intersect_lon(first, last, latitude, longitude) != -360.0d) { intersections++; } return intersections; } }