package net.osmand; /* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * A class representing a geographic location sensed at a particular * time (a "fix"). A location consists of a latitude and longitude, a * UTC timestamp. and optionally information on altitude, speed, and * bearing. * *
Information specific to a particular provider or class of * providers may be communicated to the application using getExtras, * which returns a Bundle of key/value pairs. Each provider will only * provide those entries for which information is available. */ public class Location { private String mProvider; private long mTime = 0; private double mLatitude = 0.0; private double mLongitude = 0.0; private boolean mHasAltitude = false; private double mAltitude = 0.0f; private boolean mHasSpeed = false; private float mSpeed = 0.0f; private boolean mHasBearing = false; private float mBearing = 0.0f; private boolean mHasAccuracy = false; private float mAccuracy = 0.0f; // Cache the inputs and outputs of computeDistanceAndBearing // so calls to distanceTo() and bearingTo() can share work private double mLat1 = 0.0; private double mLon1 = 0.0; private double mLat2 = 0.0; private double mLon2 = 0.0; private float mDistance = 0.0f; private float mInitialBearing = 0.0f; // Scratchpad private float[] mResults = new float[2]; /** * Constructs a new Location. By default, time, latitude, * longitude, and numSatellites are 0; hasAltitude, hasSpeed, and * hasBearing are false; and there is no extra information. * * @param provider the name of the location provider that generated this * location fix. */ public Location(String provider) { mProvider = provider; } /** * Constructs a new Location object that is a copy of the given * location. */ public Location(Location l) { set(l); } /** * Sets the contents of the location to the values from the given location. */ public void set(Location l) { mProvider = l.mProvider; mTime = l.mTime; mLatitude = l.mLatitude; mLongitude = l.mLongitude; mHasAltitude = l.mHasAltitude; mAltitude = l.mAltitude; mHasSpeed = l.mHasSpeed; mSpeed = l.mSpeed; mHasBearing = l.mHasBearing; mBearing = l.mBearing; mHasAccuracy = l.mHasAccuracy; mAccuracy = l.mAccuracy; } /** * Clears the contents of the location. */ public void reset() { mProvider = null; mTime = 0; mLatitude = 0; mLongitude = 0; mHasAltitude = false; mAltitude = 0; mHasSpeed = false; mSpeed = 0; mHasBearing = false; mBearing = 0; mHasAccuracy = false; mAccuracy = 0; } private static void computeDistanceAndBearing(double lat1, double lon1, double lat2, double lon2, float[] results) { // Based on http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf // using the "Inverse Formula" (section 4) float osmandDist = (float) (net.osmand.util.MapUtils.getDistance(lat1, lon1, lat2, lon2)); int MAXITERS = 20; // Convert lat/long to radians lat1 *= Math.PI / 180.0; lat2 *= Math.PI / 180.0; lon1 *= Math.PI / 180.0; lon2 *= Math.PI / 180.0; double a = 6378137.0; // WGS84 major axis double b = 6356752.3142; // WGS84 semi-major axis double f = (a - b) / a; double aSqMinusBSqOverBSq = (a * a - b * b) / (b * b); double L = lon2 - lon1; double A = 0.0; double U1 = Math.atan((1.0 - f) * Math.tan(lat1)); double U2 = Math.atan((1.0 - f) * Math.tan(lat2)); double cosU1 = Math.cos(U1); double cosU2 = Math.cos(U2); double sinU1 = Math.sin(U1); double sinU2 = Math.sin(U2); double cosU1cosU2 = cosU1 * cosU2; double sinU1sinU2 = sinU1 * sinU2; double sigma = 0.0; double deltaSigma = 0.0; double cosSqAlpha = 0.0; double cos2SM = 0.0; double cosSigma = 0.0; double sinSigma = 0.0; double cosLambda = 0.0; double sinLambda = 0.0; double lambda = L; // initial guess for (int iter = 0; iter < MAXITERS; iter++) { double lambdaOrig = lambda; cosLambda = Math.cos(lambda); sinLambda = Math.sin(lambda); double t1 = cosU2 * sinLambda; double t2 = cosU1 * sinU2 - sinU1 * cosU2 * cosLambda; double sinSqSigma = t1 * t1 + t2 * t2; // (14) sinSigma = Math.sqrt(sinSqSigma); cosSigma = sinU1sinU2 + cosU1cosU2 * cosLambda; // (15) sigma = Math.atan2(sinSigma, cosSigma); // (16) double sinAlpha = (sinSigma == 0) ? 0.0 : cosU1cosU2 * sinLambda / sinSigma; // (17) cosSqAlpha = 1.0 - sinAlpha * sinAlpha; cos2SM = (cosSqAlpha == 0) ? 0.0 : cosSigma - 2.0 * sinU1sinU2 / cosSqAlpha; // (18) double uSquared = cosSqAlpha * aSqMinusBSqOverBSq; // defn A = 1 + (uSquared / 16384.0) * // (3) (4096.0 + uSquared * (-768 + uSquared * (320.0 - 175.0 * uSquared))); double B = (uSquared / 1024.0) * // (4) (256.0 + uSquared * (-128.0 + uSquared * (74.0 - 47.0 * uSquared))); double C = (f / 16.0) * cosSqAlpha * (4.0 + f * (4.0 - 3.0 * cosSqAlpha)); // (10) double cos2SMSq = cos2SM * cos2SM; deltaSigma = B * sinSigma * // (6) (cos2SM + (B / 4.0) * (cosSigma * (-1.0 + 2.0 * cos2SMSq) - (B / 6.0) * cos2SM * (-3.0 + 4.0 * sinSigma * sinSigma) * (-3.0 + 4.0 * cos2SMSq))); lambda = L + (1.0 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SM + C * cosSigma * (-1.0 + 2.0 * cos2SM * cos2SM))); // (11) double delta = (lambda - lambdaOrig) / lambda; if (Math.abs(delta) < 1.0e-12) { break; } } float distance = (float) (b * A * (sigma - deltaSigma)); results[0] = distance; if (results.length > 1) { float initialBearing = (float) Math.atan2(cosU2 * sinLambda, cosU1 * sinU2 - sinU1 * cosU2 * cosLambda); initialBearing *= 180.0 / Math.PI; results[1] = initialBearing; if (results.length > 2) { float finalBearing = (float) Math.atan2(cosU1 * sinLambda, -sinU1 * cosU2 + cosU1 * sinU2 * cosLambda); finalBearing *= 180.0 / Math.PI; results[2] = finalBearing; } } // Should we leave only for 4.2.1? Or keep consistent for all devices? results[0] = osmandDist; } /** * Computes the approximate distance in meters between two * locations, and optionally the initial and final bearings of the * shortest path between them. Distance and bearing are defined using the * WGS84 ellipsoid. * *
The computed distance is stored in results[0]. If results has length * 2 or greater, the initial bearing is stored in results[1]. If results has * length 3 or greater, the final bearing is stored in results[2]. * * @param startLatitude the starting latitude * @param startLongitude the starting longitude * @param endLatitude the ending latitude * @param endLongitude the ending longitude * @param results an array of floats to hold the results * * @throws IllegalArgumentException if results is null or has length < 1 */ public static void distanceBetween(double startLatitude, double startLongitude, double endLatitude, double endLongitude, float[] results) { if (results == null || results.length < 1) { throw new IllegalArgumentException("results is null or has length < 1"); } computeDistanceAndBearing(startLatitude, startLongitude, endLatitude, endLongitude, results); } /** * Returns the approximate distance in meters between this * location and the given location. Distance is defined using * the WGS84 ellipsoid. * * @param dest the destination location * @return the approximate distance in meters */ public float distanceTo(Location dest) { // See if we already have the result synchronized (mResults) { if (mLatitude != mLat1 || mLongitude != mLon1 || dest.mLatitude != mLat2 || dest.mLongitude != mLon2) { computeDistanceAndBearing(mLatitude, mLongitude, dest.mLatitude, dest.mLongitude, mResults); mLat1 = mLatitude; mLon1 = mLongitude; mLat2 = dest.mLatitude; mLon2 = dest.mLongitude; mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mDistance; } } /** * Returns the approximate initial bearing in degrees East of true * North when traveling along the shortest path between this * location and the given location. The shortest path is defined * using the WGS84 ellipsoid. Locations that are (nearly) * antipodal may produce meaningless results. * * @param dest the destination location * @return the initial bearing in degrees */ public float bearingTo(Location dest) { synchronized (mResults) { // See if we already have the result if (mLatitude != mLat1 || mLongitude != mLon1 || dest.mLatitude != mLat2 || dest.mLongitude != mLon2) { computeDistanceAndBearing(mLatitude, mLongitude, dest.mLatitude, dest.mLongitude, mResults); mLat1 = mLatitude; mLon1 = mLongitude; mLat2 = dest.mLatitude; mLon2 = dest.mLongitude; mDistance = mResults[0]; mInitialBearing = mResults[1]; } return mInitialBearing; } } /** * Returns the name of the provider that generated this fix, * or null if it is not associated with a provider. */ public String getProvider() { return mProvider; } /** * Sets the name of the provider that generated this fix. */ public void setProvider(String provider) { mProvider = provider; } /** * Returns the UTC time of this fix, in milliseconds since January 1, * 1970. */ public long getTime() { return mTime; } /** * Sets the UTC time of this fix, in milliseconds since January 1, * 1970. */ public void setTime(long time) { mTime = time; } /** * Returns the latitude of this fix. */ public double getLatitude() { return mLatitude; } /** * Sets the latitude of this fix. */ public void setLatitude(double latitude) { mLatitude = latitude; } /** * Returns the longitude of this fix. */ public double getLongitude() { return mLongitude; } /** * Sets the longitude of this fix. */ public void setLongitude(double longitude) { mLongitude = longitude; } /** * Returns true if this fix contains altitude information, false * otherwise. */ public boolean hasAltitude() { return mHasAltitude; } /** * Returns the altitude of this fix. If {@link #hasAltitude} is false, * 0.0f is returned. */ public double getAltitude() { return mAltitude; } /** * Sets the altitude of this fix. Following this call, * hasAltitude() will return true. */ public void setAltitude(double altitude) { mAltitude = altitude; mHasAltitude = true; } /** * Clears the altitude of this fix. Following this call, * hasAltitude() will return false. */ public void removeAltitude() { mAltitude = 0.0f; mHasAltitude = false; } /** * Returns true if this fix contains speed information, false * otherwise. The default implementation returns false. */ public boolean hasSpeed() { return mHasSpeed; } /** * Returns the speed of the device over ground in meters/second. * If hasSpeed() is false, 0.0f is returned. */ public float getSpeed() { return mSpeed; } /** * Sets the speed of this fix, in meters/second. Following this * call, hasSpeed() will return true. */ public void setSpeed(float speed) { mSpeed = speed; mHasSpeed = true; } /** * Clears the speed of this fix. Following this call, hasSpeed() * will return false. */ public void removeSpeed() { mSpeed = 0.0f; mHasSpeed = false; } /** * Returns true if the provider is able to report bearing information, * false otherwise. The default implementation returns false. */ public boolean hasBearing() { return mHasBearing; } /** * Returns the direction of travel in degrees East of true * North. If hasBearing() is false, 0.0 is returned. */ public float getBearing() { return mBearing; } /** * Sets the bearing of this fix. Following this call, hasBearing() * will return true. */ public void setBearing(float bearing) { while (bearing < 0.0f) { bearing += 360.0f; } while (bearing >= 360.0f) { bearing -= 360.0f; } mBearing = bearing; mHasBearing = true; } /** * Clears the bearing of this fix. Following this call, hasBearing() * will return false. */ public void removeBearing() { mBearing = 0.0f; mHasBearing = false; } /** * Returns true if the provider is able to report accuracy information, * false otherwise. The default implementation returns false. */ public boolean hasAccuracy() { return mHasAccuracy; } /** * Returns the accuracy of the fix in meters. If hasAccuracy() is false, * 0.0 is returned. */ public float getAccuracy() { return mAccuracy; } /** * Sets the accuracy of this fix. Following this call, hasAccuracy() * will return true. */ public void setAccuracy(float accuracy) { mAccuracy = accuracy; mHasAccuracy = true; } /** * Clears the accuracy of this fix. Following this call, hasAccuracy() * will return false. */ public void removeAccuracy() { mAccuracy = 0.0f; mHasAccuracy = false; } @Override public String toString() { return "Location[mProvider=" + mProvider + ",mTime=" + mTime + ",mLatitude=" + mLatitude + ",mLongitude=" + mLongitude + ",mHasAltitude=" + mHasAltitude + ",mAltitude=" + mAltitude + ",mHasSpeed=" + mHasSpeed + ",mSpeed=" + mSpeed + ",mHasBearing=" + mHasBearing + ",mBearing=" + mBearing + ",mHasAccuracy=" + mHasAccuracy + ",mAccuracy=" + mAccuracy; } }