package net.osmand; import net.osmand.data.LatLon; import net.osmand.util.MapUtils; import java.util.ArrayList; import java.util.List; import java.util.Random; /* * === Implementation of ant swarm TSP solver. === * * The algorithm is described in [1, page 8]. * * == Tweaks/notes == * - I added a system where the ant chooses with probability * "pr" to go to a purely random town. This did not yield better * results so I left "pr" fairly low. * - Used an approximate pow function - the speedup is * more than a factor of 10! And accuracy is not needed * See AntTsp.pow for details. * * == Parameters == * I set the parameters to values suggested in [1]. My own experimentation * showed that they are pretty good. * * == Usage == * - Compile: javac AntTsp.java * - Run: java AntTsp * * == TSP file format == * Full adjacency matrix. Columns separated by spaces, rows by newline. * Weights parsed as doubles, must be >= 0. * * == References == * [1] M. Dorigo, The Ant System: Optimization by a colony of cooperating agents * ftp://iridia.ulb.ac.be/pub/mdorigo/journals/IJ.10-SMC96.pdf * */ // https://github.com/lukedodd/ant-tsp public class TspAnt { // Algorithm parameters: // original amount of trail private double c = 1.0; // trail preference private double alpha = 1; // greedy preference private double beta = 5; // trail evaporation coefficient private double evaporation = 0.5; // new trail deposit coefficient; private double Q = 500; // number of ants used = numAntFactor*numTowns private double numAntFactor = 0.8; // probability of pure random selection of the next town private double pr = 0.01; // Reasonable number of iterations // - results typically settle down by 500 private int maxIterations = 2000; public int n = 0; // # towns public int m = 0; // # ants private double graph[][] = null; private double trails[][] = null; private Ant ants[] = null; private Random rand = new Random(); private double probs[] = null; private int currentIndex = 0; public int[] bestTour; public double bestTourLength; // Ant class. Maintains tour and tabu information. private class Ant { public int tour[] = new int[graph.length]; // Maintain visited list for towns, much faster // than checking if in tour so far. public boolean visited[] = new boolean[graph.length]; public void visitTown(int town) { tour[currentIndex + 1] = town; visited[town] = true; } public boolean visited(int i) { return visited[i]; } public double tourLength() { double length = graph[tour[n - 1]][tour[0]]; for (int i = 0; i < n - 1; i++) { length += graph[tour[i]][tour[i + 1]]; } return length; } public void clear() { for (int i = 0; i < n; i++) visited[i] = false; } } // Read in graph from a file. // Allocates all memory. // Adds 1 to edge lengths to ensure no zero length edges. public TspAnt readGraph(List intermediates, LatLon start, LatLon end) { boolean keepEndPoint = end != null; List l = new ArrayList(); l.add(start); l.addAll(intermediates); if (keepEndPoint) { l.add(end); } n = l.size() ; // System.out.println("Cost"); graph = new double[n][n]; double maxSum = 0; for (int i = 0; i < n ; i++) { double maxIWeight = 0; for (int j = 1; j < n ; j++) { double d = Math.rint(MapUtils.getDistance(l.get(i), l.get(j))) + 0.1; maxIWeight = Math.max(d, maxIWeight); graph[i][j] = d; } maxSum += maxIWeight; } maxSum = Math.rint(maxSum) + 1; for (int i = 0; i < n; i++) { if (keepEndPoint && i == n - 1) { graph[i][0] = 0.1; } else { graph[i][0] = maxSum; } // System.out.println(Arrays.toString(graph[i])); } m = (int) (n * numAntFactor); // all memory allocations done here trails = new double[n][n]; probs = new double[n]; ants = new Ant[m]; for (int j = 0; j < m; j++) ants[j] = new Ant(); return this; } // Approximate power function, Math.pow is quite slow and we don't need accuracy. // See: // http://martin.ankerl.com/2007/10/04/optimized-pow-approximation-for-java-and-c-c/ // Important facts: // - >25 times faster // - Extreme cases can lead to error of 25% - but usually less. // - Does not harm results -- not surprising for a stochastic algorithm. public static double pow(final double a, final double b) { final int x = (int) (Double.doubleToLongBits(a) >> 32); final int y = (int) (b * (x - 1072632447) + 1072632447); return Double.longBitsToDouble(((long) y) << 32); } // Store in probs array the probability of moving to each town // [1] describes how these are calculated. // In short: ants like to follow stronger and shorter trails more. private void probTo(Ant ant) { int i = ant.tour[currentIndex]; double denom = 0.0; for (int l = 0; l < n; l++) if (!ant.visited(l)) denom += pow(trails[i][l], alpha) * pow(1.0 / graph[i][l], beta); for (int j = 0; j < n; j++) { if (ant.visited(j)) { probs[j] = 0.0; } else { double numerator = pow(trails[i][j], alpha) * pow(1.0 / graph[i][j], beta); probs[j] = numerator / denom; } } } // Given an ant select the next town based on the probabilities // we assign to each town. With pr probability chooses // totally randomly (taking into account tabu list). private int selectNextTown(Ant ant) { // sometimes just randomly select if (rand.nextDouble() < pr) { int t = rand.nextInt(n - currentIndex); // random town int j = -1; for (int i = 0; i < n; i++) { if (!ant.visited(i)) j++; if (j == t) return i; } } // calculate probabilities for each town (stored in probs) probTo(ant); // randomly select according to probs double r = rand.nextDouble(); double tot = 0; for (int i = 0; i < n; i++) { tot += probs[i]; if (tot >= r) return i; } throw new RuntimeException("Not supposed to get here."); } // Update trails based on ants tours private void updateTrails() { // evaporation for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) trails[i][j] *= evaporation; // each ants contribution for (Ant a : ants) { double contribution = Q / a.tourLength(); for (int i = 0; i < n - 1; i++) { trails[a.tour[i]][a.tour[i + 1]] += contribution; } trails[a.tour[n - 1]][a.tour[0]] += contribution; } } // Choose the next town for all ants private void moveAnts() { // each ant follows trails... while (currentIndex < n - 1) { for (Ant a : ants) a.visitTown(selectNextTown(a)); currentIndex++; } } // m ants with random start city private void setupAnts() { currentIndex = -1; for (int i = 0; i < m; i++) { ants[i].clear(); // faster than fresh allocations. ants[i].visitTown(rand.nextInt(n)); } currentIndex++; } private void updateBest() { if (bestTour == null) { bestTour = ants[0].tour; bestTourLength = ants[0].tourLength(); } for (Ant a : ants) { if (a.tourLength() < bestTourLength) { bestTourLength = a.tourLength(); bestTour = a.tour.clone(); } } } public static String tourToString(int tour[]) { String t = ""; for (int i : tour) t = t + " " + i; return t; } public int[] solve() { // clear trails for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) trails[i][j] = c; int iteration = 0; // run for maxIterations // preserve best tour while (iteration < maxIterations) { setupAnts(); moveAnts(); updateTrails(); updateBest(); iteration++; } // Subtract n because we added one to edges on load System.out.println("Best tour length: " + (bestTourLength - n*0.1)); System.out.println("Best tour:" + tourToString(bestTour)); return alignAnswer(bestTour.clone()); } private static int[] alignAnswer(int[] ans) { int[] alignAns = new int[ans.length]; int shift = 0; for(int j = 0; j < ans.length; j++) { if(ans[j] == 0) { shift = j; break; } } for (int j = 0; j < ans.length; j++) { alignAns[(j - shift + ans.length) % ans.length] = ans[j]; } return alignAns; } // Load graph file given on args[0]. // (Full adjacency matrix. Columns separated by spaces, rows by newlines.) // Solve the TSP repeatedly for maxIterations // printing best tour so far each time. public static void main(String[] args) { // Load in TSP data file. if (args.length < 1) { System.err.println("Please specify a TSP data file."); return; } TspAnt anttsp = new TspAnt(); // Repeatedly solve - will keep the best tour found. for (; ; ) { anttsp.solve(); } } }