OsmAnd/Osmand-kernel/protobuf/google/protobuf/wire_format.cc
2012-04-30 01:51:51 +02:00

1069 lines
39 KiB
C++

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <stack>
#include <string>
#include <vector>
#include <google/protobuf/wire_format.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/wire_format_lite_inl.h>
#include <google/protobuf/descriptor.pb.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/unknown_field_set.h>
namespace google {
namespace protobuf {
namespace internal {
using internal::WireFormatLite;
namespace {
// This function turns out to be convenient when using some macros later.
inline int GetEnumNumber(const EnumValueDescriptor* descriptor) {
return descriptor->number();
}
} // anonymous namespace
// ===================================================================
bool UnknownFieldSetFieldSkipper::SkipField(
io::CodedInputStream* input, uint32 tag) {
return WireFormat::SkipField(input, tag, unknown_fields_);
}
bool UnknownFieldSetFieldSkipper::SkipMessage(io::CodedInputStream* input) {
return WireFormat::SkipMessage(input, unknown_fields_);
}
void UnknownFieldSetFieldSkipper::SkipUnknownEnum(
int field_number, int value) {
unknown_fields_->AddVarint(field_number, value);
}
bool WireFormat::SkipField(io::CodedInputStream* input, uint32 tag,
UnknownFieldSet* unknown_fields) {
int number = WireFormatLite::GetTagFieldNumber(tag);
switch (WireFormatLite::GetTagWireType(tag)) {
case WireFormatLite::WIRETYPE_VARINT: {
uint64 value;
if (!input->ReadVarint64(&value)) return false;
if (unknown_fields != NULL) unknown_fields->AddVarint(number, value);
return true;
}
case WireFormatLite::WIRETYPE_FIXED64: {
uint64 value;
if (!input->ReadLittleEndian64(&value)) return false;
if (unknown_fields != NULL) unknown_fields->AddFixed64(number, value);
return true;
}
case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: {
uint32 length;
if (!input->ReadVarint32(&length)) return false;
if (unknown_fields == NULL) {
if (!input->Skip(length)) return false;
} else {
if (!input->ReadString(unknown_fields->AddLengthDelimited(number),
length)) {
return false;
}
}
return true;
}
case WireFormatLite::WIRETYPE_START_GROUP: {
if (!input->IncrementRecursionDepth()) return false;
if (!SkipMessage(input, (unknown_fields == NULL) ?
NULL : unknown_fields->AddGroup(number))) {
return false;
}
input->DecrementRecursionDepth();
// Check that the ending tag matched the starting tag.
if (!input->LastTagWas(WireFormatLite::MakeTag(
WireFormatLite::GetTagFieldNumber(tag),
WireFormatLite::WIRETYPE_END_GROUP))) {
return false;
}
return true;
}
case WireFormatLite::WIRETYPE_END_GROUP: {
return false;
}
case WireFormatLite::WIRETYPE_FIXED32: {
uint32 value;
if (!input->ReadLittleEndian32(&value)) return false;
if (unknown_fields != NULL) unknown_fields->AddFixed32(number, value);
return true;
}
default: {
return false;
}
}
}
bool WireFormat::SkipMessage(io::CodedInputStream* input,
UnknownFieldSet* unknown_fields) {
while(true) {
uint32 tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) {
// Must be the end of the message.
return true;
}
if (!SkipField(input, tag, unknown_fields)) return false;
}
}
void WireFormat::SerializeUnknownFields(const UnknownFieldSet& unknown_fields,
io::CodedOutputStream* output) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_VARINT));
output->WriteVarint64(field.varint());
break;
case UnknownField::TYPE_FIXED32:
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_FIXED32));
output->WriteLittleEndian32(field.fixed32());
break;
case UnknownField::TYPE_FIXED64:
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_FIXED64));
output->WriteLittleEndian64(field.fixed64());
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED));
output->WriteVarint32(field.length_delimited().size());
output->WriteString(field.length_delimited());
break;
case UnknownField::TYPE_GROUP:
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_START_GROUP));
SerializeUnknownFields(field.group(), output);
output->WriteVarint32(WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_END_GROUP));
break;
}
}
}
uint8* WireFormat::SerializeUnknownFieldsToArray(
const UnknownFieldSet& unknown_fields,
uint8* target) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
target = WireFormatLite::WriteInt64ToArray(
field.number(), field.varint(), target);
break;
case UnknownField::TYPE_FIXED32:
target = WireFormatLite::WriteFixed32ToArray(
field.number(), field.fixed32(), target);
break;
case UnknownField::TYPE_FIXED64:
target = WireFormatLite::WriteFixed64ToArray(
field.number(), field.fixed64(), target);
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
target = WireFormatLite::WriteBytesToArray(
field.number(), field.length_delimited(), target);
break;
case UnknownField::TYPE_GROUP:
target = WireFormatLite::WriteTagToArray(
field.number(), WireFormatLite::WIRETYPE_START_GROUP, target);
target = SerializeUnknownFieldsToArray(field.group(), target);
target = WireFormatLite::WriteTagToArray(
field.number(), WireFormatLite::WIRETYPE_END_GROUP, target);
break;
}
}
return target;
}
void WireFormat::SerializeUnknownMessageSetItems(
const UnknownFieldSet& unknown_fields,
io::CodedOutputStream* output) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
// The only unknown fields that are allowed to exist in a MessageSet are
// messages, which are length-delimited.
if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) {
const string& data = field.length_delimited();
// Start group.
output->WriteVarint32(WireFormatLite::kMessageSetItemStartTag);
// Write type ID.
output->WriteVarint32(WireFormatLite::kMessageSetTypeIdTag);
output->WriteVarint32(field.number());
// Write message.
output->WriteVarint32(WireFormatLite::kMessageSetMessageTag);
output->WriteVarint32(data.size());
output->WriteString(data);
// End group.
output->WriteVarint32(WireFormatLite::kMessageSetItemEndTag);
}
}
}
uint8* WireFormat::SerializeUnknownMessageSetItemsToArray(
const UnknownFieldSet& unknown_fields,
uint8* target) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
// The only unknown fields that are allowed to exist in a MessageSet are
// messages, which are length-delimited.
if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) {
const string& data = field.length_delimited();
// Start group.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemStartTag, target);
// Write type ID.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetTypeIdTag, target);
target = io::CodedOutputStream::WriteVarint32ToArray(
field.number(), target);
// Write message.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetMessageTag, target);
target = io::CodedOutputStream::WriteVarint32ToArray(data.size(), target);
target = io::CodedOutputStream::WriteStringToArray(data, target);
// End group.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemEndTag, target);
}
}
return target;
}
int WireFormat::ComputeUnknownFieldsSize(
const UnknownFieldSet& unknown_fields) {
int size = 0;
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_VARINT));
size += io::CodedOutputStream::VarintSize64(field.varint());
break;
case UnknownField::TYPE_FIXED32:
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_FIXED32));
size += sizeof(int32);
break;
case UnknownField::TYPE_FIXED64:
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_FIXED64));
size += sizeof(int64);
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED));
size += io::CodedOutputStream::VarintSize32(
field.length_delimited().size());
size += field.length_delimited().size();
break;
case UnknownField::TYPE_GROUP:
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_START_GROUP));
size += ComputeUnknownFieldsSize(field.group());
size += io::CodedOutputStream::VarintSize32(
WireFormatLite::MakeTag(field.number(),
WireFormatLite::WIRETYPE_END_GROUP));
break;
}
}
return size;
}
int WireFormat::ComputeUnknownMessageSetItemsSize(
const UnknownFieldSet& unknown_fields) {
int size = 0;
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
// The only unknown fields that are allowed to exist in a MessageSet are
// messages, which are length-delimited.
if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) {
size += WireFormatLite::kMessageSetItemTagsSize;
size += io::CodedOutputStream::VarintSize32(field.number());
size += io::CodedOutputStream::VarintSize32(
field.length_delimited().size());
size += field.length_delimited().size();
}
}
return size;
}
// ===================================================================
bool WireFormat::ParseAndMergePartial(io::CodedInputStream* input,
Message* message) {
const Descriptor* descriptor = message->GetDescriptor();
const Reflection* message_reflection = message->GetReflection();
while(true) {
uint32 tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
if (WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_END_GROUP) {
// Must be the end of the message.
return true;
}
const FieldDescriptor* field = NULL;
if (descriptor != NULL) {
int field_number = WireFormatLite::GetTagFieldNumber(tag);
field = descriptor->FindFieldByNumber(field_number);
// If that failed, check if the field is an extension.
if (field == NULL && descriptor->IsExtensionNumber(field_number)) {
if (input->GetExtensionPool() == NULL) {
field = message_reflection->FindKnownExtensionByNumber(field_number);
} else {
field = input->GetExtensionPool()
->FindExtensionByNumber(descriptor, field_number);
}
}
// If that failed, but we're a MessageSet, and this is the tag for a
// MessageSet item, then parse that.
if (field == NULL &&
descriptor->options().message_set_wire_format() &&
tag == WireFormatLite::kMessageSetItemStartTag) {
if (!ParseAndMergeMessageSetItem(input, message)) {
return false;
}
continue; // Skip ParseAndMergeField(); already taken care of.
}
}
if (!ParseAndMergeField(tag, field, message, input)) {
return false;
}
}
}
bool WireFormat::ParseAndMergeField(
uint32 tag,
const FieldDescriptor* field, // May be NULL for unknown
Message* message,
io::CodedInputStream* input) {
const Reflection* message_reflection = message->GetReflection();
enum { UNKNOWN, NORMAL_FORMAT, PACKED_FORMAT } value_format;
if (field == NULL) {
value_format = UNKNOWN;
} else if (WireFormatLite::GetTagWireType(tag) ==
WireTypeForFieldType(field->type())) {
value_format = NORMAL_FORMAT;
} else if (field->is_packable() &&
WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
value_format = PACKED_FORMAT;
} else {
// We don't recognize this field. Either the field number is unknown
// or the wire type doesn't match. Put it in our unknown field set.
value_format = UNKNOWN;
}
if (value_format == UNKNOWN) {
return SkipField(input, tag,
message_reflection->MutableUnknownFields(message));
} else if (value_format == PACKED_FORMAT) {
uint32 length;
if (!input->ReadVarint32(&length)) return false;
io::CodedInputStream::Limit limit = input->PushLimit(length);
switch (field->type()) {
#define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
while (input->BytesUntilLimit() > 0) { \
CPPTYPE value; \
if (!WireFormatLite::ReadPrimitive< \
CPPTYPE, WireFormatLite::TYPE_##TYPE>(input, &value)) \
return false; \
message_reflection->Add##CPPTYPE_METHOD(message, field, value); \
} \
break; \
}
HANDLE_PACKED_TYPE( INT32, int32, Int32)
HANDLE_PACKED_TYPE( INT64, int64, Int64)
HANDLE_PACKED_TYPE(SINT32, int32, Int32)
HANDLE_PACKED_TYPE(SINT64, int64, Int64)
HANDLE_PACKED_TYPE(UINT32, uint32, UInt32)
HANDLE_PACKED_TYPE(UINT64, uint64, UInt64)
HANDLE_PACKED_TYPE( FIXED32, uint32, UInt32)
HANDLE_PACKED_TYPE( FIXED64, uint64, UInt64)
HANDLE_PACKED_TYPE(SFIXED32, int32, Int32)
HANDLE_PACKED_TYPE(SFIXED64, int64, Int64)
HANDLE_PACKED_TYPE(FLOAT , float , Float )
HANDLE_PACKED_TYPE(DOUBLE, double, Double)
HANDLE_PACKED_TYPE(BOOL, bool, Bool)
#undef HANDLE_PACKED_TYPE
case FieldDescriptor::TYPE_ENUM: {
while (input->BytesUntilLimit() > 0) {
int value;
if (!WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
input, &value)) return false;
const EnumValueDescriptor* enum_value =
field->enum_type()->FindValueByNumber(value);
if (enum_value != NULL) {
message_reflection->AddEnum(message, field, enum_value);
}
}
break;
}
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_BYTES:
// Can't have packed fields of these types: these should be caught by
// the protocol compiler.
return false;
break;
}
input->PopLimit(limit);
} else {
// Non-packed value (value_format == NORMAL_FORMAT)
switch (field->type()) {
#define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
CPPTYPE value; \
if (!WireFormatLite::ReadPrimitive< \
CPPTYPE, WireFormatLite::TYPE_##TYPE>(input, &value)) \
return false; \
if (field->is_repeated()) { \
message_reflection->Add##CPPTYPE_METHOD(message, field, value); \
} else { \
message_reflection->Set##CPPTYPE_METHOD(message, field, value); \
} \
break; \
}
HANDLE_TYPE( INT32, int32, Int32)
HANDLE_TYPE( INT64, int64, Int64)
HANDLE_TYPE(SINT32, int32, Int32)
HANDLE_TYPE(SINT64, int64, Int64)
HANDLE_TYPE(UINT32, uint32, UInt32)
HANDLE_TYPE(UINT64, uint64, UInt64)
HANDLE_TYPE( FIXED32, uint32, UInt32)
HANDLE_TYPE( FIXED64, uint64, UInt64)
HANDLE_TYPE(SFIXED32, int32, Int32)
HANDLE_TYPE(SFIXED64, int64, Int64)
HANDLE_TYPE(FLOAT , float , Float )
HANDLE_TYPE(DOUBLE, double, Double)
HANDLE_TYPE(BOOL, bool, Bool)
#undef HANDLE_TYPE
case FieldDescriptor::TYPE_ENUM: {
int value;
if (!WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
input, &value)) return false;
const EnumValueDescriptor* enum_value =
field->enum_type()->FindValueByNumber(value);
if (enum_value != NULL) {
if (field->is_repeated()) {
message_reflection->AddEnum(message, field, enum_value);
} else {
message_reflection->SetEnum(message, field, enum_value);
}
} else {
// The enum value is not one of the known values. Add it to the
// UnknownFieldSet.
int64 sign_extended_value = static_cast<int64>(value);
message_reflection->MutableUnknownFields(message)
->AddVarint(WireFormatLite::GetTagFieldNumber(tag),
sign_extended_value);
}
break;
}
// Handle strings separately so that we can optimize the ctype=CORD case.
case FieldDescriptor::TYPE_STRING: {
string value;
if (!WireFormatLite::ReadString(input, &value)) return false;
VerifyUTF8String(value.data(), value.length(), PARSE);
if (field->is_repeated()) {
message_reflection->AddString(message, field, value);
} else {
message_reflection->SetString(message, field, value);
}
break;
}
case FieldDescriptor::TYPE_BYTES: {
string value;
if (!WireFormatLite::ReadBytes(input, &value)) return false;
if (field->is_repeated()) {
message_reflection->AddString(message, field, value);
} else {
message_reflection->SetString(message, field, value);
}
break;
}
case FieldDescriptor::TYPE_GROUP: {
Message* sub_message;
if (field->is_repeated()) {
sub_message = message_reflection->AddMessage(
message, field, input->GetExtensionFactory());
} else {
sub_message = message_reflection->MutableMessage(
message, field, input->GetExtensionFactory());
}
if (!WireFormatLite::ReadGroup(WireFormatLite::GetTagFieldNumber(tag),
input, sub_message))
return false;
break;
}
case FieldDescriptor::TYPE_MESSAGE: {
Message* sub_message;
if (field->is_repeated()) {
sub_message = message_reflection->AddMessage(
message, field, input->GetExtensionFactory());
} else {
sub_message = message_reflection->MutableMessage(
message, field, input->GetExtensionFactory());
}
if (!WireFormatLite::ReadMessage(input, sub_message)) return false;
break;
}
}
}
return true;
}
bool WireFormat::ParseAndMergeMessageSetItem(
io::CodedInputStream* input,
Message* message) {
const Reflection* message_reflection = message->GetReflection();
// This method parses a group which should contain two fields:
// required int32 type_id = 2;
// required data message = 3;
// Once we see a type_id, we'll construct a fake tag for this extension
// which is the tag it would have had under the proto2 extensions wire
// format.
uint32 fake_tag = 0;
// Once we see a type_id, we'll look up the FieldDescriptor for the
// extension.
const FieldDescriptor* field = NULL;
// If we see message data before the type_id, we'll append it to this so
// we can parse it later. This will probably never happen in practice,
// as no MessageSet encoder I know of writes the message before the type ID.
// But, it's technically valid so we should allow it.
// TODO(kenton): Use a Cord instead? Do I care?
string message_data;
while (true) {
uint32 tag = input->ReadTag();
if (tag == 0) return false;
switch (tag) {
case WireFormatLite::kMessageSetTypeIdTag: {
uint32 type_id;
if (!input->ReadVarint32(&type_id)) return false;
fake_tag = WireFormatLite::MakeTag(
type_id, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
field = message_reflection->FindKnownExtensionByNumber(type_id);
if (!message_data.empty()) {
// We saw some message data before the type_id. Have to parse it
// now.
io::ArrayInputStream raw_input(message_data.data(),
message_data.size());
io::CodedInputStream sub_input(&raw_input);
if (!ParseAndMergeField(fake_tag, field, message,
&sub_input)) {
return false;
}
message_data.clear();
}
break;
}
case WireFormatLite::kMessageSetMessageTag: {
if (fake_tag == 0) {
// We haven't seen a type_id yet. Append this data to message_data.
string temp;
uint32 length;
if (!input->ReadVarint32(&length)) return false;
if (!input->ReadString(&temp, length)) return false;
message_data.append(temp);
} else {
// Already saw type_id, so we can parse this directly.
if (!ParseAndMergeField(fake_tag, field, message, input)) {
return false;
}
}
break;
}
case WireFormatLite::kMessageSetItemEndTag: {
return true;
}
default: {
if (!SkipField(input, tag, NULL)) return false;
}
}
}
}
// ===================================================================
void WireFormat::SerializeWithCachedSizes(
const Message& message,
int size, io::CodedOutputStream* output) {
const Descriptor* descriptor = message.GetDescriptor();
const Reflection* message_reflection = message.GetReflection();
int expected_endpoint = output->ByteCount() + size;
vector<const FieldDescriptor*> fields;
message_reflection->ListFields(message, &fields);
for (int i = 0; i < fields.size(); i++) {
SerializeFieldWithCachedSizes(fields[i], message, output);
}
if (descriptor->options().message_set_wire_format()) {
SerializeUnknownMessageSetItems(
message_reflection->GetUnknownFields(message), output);
} else {
SerializeUnknownFields(
message_reflection->GetUnknownFields(message), output);
}
GOOGLE_CHECK_EQ(output->ByteCount(), expected_endpoint)
<< ": Protocol message serialized to a size different from what was "
"originally expected. Perhaps it was modified by another thread "
"during serialization?";
}
void WireFormat::SerializeFieldWithCachedSizes(
const FieldDescriptor* field,
const Message& message,
io::CodedOutputStream* output) {
const Reflection* message_reflection = message.GetReflection();
if (field->is_extension() &&
field->containing_type()->options().message_set_wire_format() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->is_repeated()) {
SerializeMessageSetItemWithCachedSizes(field, message, output);
return;
}
int count = 0;
if (field->is_repeated()) {
count = message_reflection->FieldSize(message, field);
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
const bool is_packed = field->options().packed();
if (is_packed && count > 0) {
WireFormatLite::WriteTag(field->number(),
WireFormatLite::WIRETYPE_LENGTH_DELIMITED, output);
const int data_size = FieldDataOnlyByteSize(field, message);
output->WriteVarint32(data_size);
}
for (int j = 0; j < count; j++) {
switch (field->type()) {
#define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
const CPPTYPE value = field->is_repeated() ? \
message_reflection->GetRepeated##CPPTYPE_METHOD( \
message, field, j) : \
message_reflection->Get##CPPTYPE_METHOD( \
message, field); \
if (is_packed) { \
WireFormatLite::Write##TYPE_METHOD##NoTag(value, output); \
} else { \
WireFormatLite::Write##TYPE_METHOD(field->number(), value, output); \
} \
break; \
}
HANDLE_PRIMITIVE_TYPE( INT32, int32, Int32, Int32)
HANDLE_PRIMITIVE_TYPE( INT64, int64, Int64, Int64)
HANDLE_PRIMITIVE_TYPE(SINT32, int32, SInt32, Int32)
HANDLE_PRIMITIVE_TYPE(SINT64, int64, SInt64, Int64)
HANDLE_PRIMITIVE_TYPE(UINT32, uint32, UInt32, UInt32)
HANDLE_PRIMITIVE_TYPE(UINT64, uint64, UInt64, UInt64)
HANDLE_PRIMITIVE_TYPE( FIXED32, uint32, Fixed32, UInt32)
HANDLE_PRIMITIVE_TYPE( FIXED64, uint64, Fixed64, UInt64)
HANDLE_PRIMITIVE_TYPE(SFIXED32, int32, SFixed32, Int32)
HANDLE_PRIMITIVE_TYPE(SFIXED64, int64, SFixed64, Int64)
HANDLE_PRIMITIVE_TYPE(FLOAT , float , Float , Float )
HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double)
HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool)
#undef HANDLE_PRIMITIVE_TYPE
#define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: \
WireFormatLite::Write##TYPE_METHOD( \
field->number(), \
field->is_repeated() ? \
message_reflection->GetRepeated##CPPTYPE_METHOD( \
message, field, j) : \
message_reflection->Get##CPPTYPE_METHOD(message, field), \
output); \
break;
HANDLE_TYPE(GROUP , Group , Message)
HANDLE_TYPE(MESSAGE, Message, Message)
#undef HANDLE_TYPE
case FieldDescriptor::TYPE_ENUM: {
const EnumValueDescriptor* value = field->is_repeated() ?
message_reflection->GetRepeatedEnum(message, field, j) :
message_reflection->GetEnum(message, field);
if (is_packed) {
WireFormatLite::WriteEnumNoTag(value->number(), output);
} else {
WireFormatLite::WriteEnum(field->number(), value->number(), output);
}
break;
}
// Handle strings separately so that we can get string references
// instead of copying.
case FieldDescriptor::TYPE_STRING: {
string scratch;
const string& value = field->is_repeated() ?
message_reflection->GetRepeatedStringReference(
message, field, j, &scratch) :
message_reflection->GetStringReference(message, field, &scratch);
VerifyUTF8String(value.data(), value.length(), SERIALIZE);
WireFormatLite::WriteString(field->number(), value, output);
break;
}
case FieldDescriptor::TYPE_BYTES: {
string scratch;
const string& value = field->is_repeated() ?
message_reflection->GetRepeatedStringReference(
message, field, j, &scratch) :
message_reflection->GetStringReference(message, field, &scratch);
WireFormatLite::WriteBytes(field->number(), value, output);
break;
}
}
}
}
void WireFormat::SerializeMessageSetItemWithCachedSizes(
const FieldDescriptor* field,
const Message& message,
io::CodedOutputStream* output) {
const Reflection* message_reflection = message.GetReflection();
// Start group.
output->WriteVarint32(WireFormatLite::kMessageSetItemStartTag);
// Write type ID.
output->WriteVarint32(WireFormatLite::kMessageSetTypeIdTag);
output->WriteVarint32(field->number());
// Write message.
output->WriteVarint32(WireFormatLite::kMessageSetMessageTag);
const Message& sub_message = message_reflection->GetMessage(message, field);
output->WriteVarint32(sub_message.GetCachedSize());
sub_message.SerializeWithCachedSizes(output);
// End group.
output->WriteVarint32(WireFormatLite::kMessageSetItemEndTag);
}
// ===================================================================
int WireFormat::ByteSize(const Message& message) {
const Descriptor* descriptor = message.GetDescriptor();
const Reflection* message_reflection = message.GetReflection();
int our_size = 0;
vector<const FieldDescriptor*> fields;
message_reflection->ListFields(message, &fields);
for (int i = 0; i < fields.size(); i++) {
our_size += FieldByteSize(fields[i], message);
}
if (descriptor->options().message_set_wire_format()) {
our_size += ComputeUnknownMessageSetItemsSize(
message_reflection->GetUnknownFields(message));
} else {
our_size += ComputeUnknownFieldsSize(
message_reflection->GetUnknownFields(message));
}
return our_size;
}
int WireFormat::FieldByteSize(
const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
if (field->is_extension() &&
field->containing_type()->options().message_set_wire_format() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->is_repeated()) {
return MessageSetItemByteSize(field, message);
}
int count = 0;
if (field->is_repeated()) {
count = message_reflection->FieldSize(message, field);
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
const int data_size = FieldDataOnlyByteSize(field, message);
int our_size = data_size;
if (field->options().packed()) {
if (data_size > 0) {
// Packed fields get serialized like a string, not their native type.
// Technically this doesn't really matter; the size only changes if it's
// a GROUP
our_size += TagSize(field->number(), FieldDescriptor::TYPE_STRING);
our_size += io::CodedOutputStream::VarintSize32(data_size);
}
} else {
our_size += count * TagSize(field->number(), field->type());
}
return our_size;
}
int WireFormat::FieldDataOnlyByteSize(
const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
int count = 0;
if (field->is_repeated()) {
count = message_reflection->FieldSize(message, field);
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
int data_size = 0;
switch (field->type()) {
#define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: \
if (field->is_repeated()) { \
for (int j = 0; j < count; j++) { \
data_size += WireFormatLite::TYPE_METHOD##Size( \
message_reflection->GetRepeated##CPPTYPE_METHOD( \
message, field, j)); \
} \
} else { \
data_size += WireFormatLite::TYPE_METHOD##Size( \
message_reflection->Get##CPPTYPE_METHOD(message, field)); \
} \
break;
#define HANDLE_FIXED_TYPE(TYPE, TYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: \
data_size += count * WireFormatLite::k##TYPE_METHOD##Size; \
break;
HANDLE_TYPE( INT32, Int32, Int32)
HANDLE_TYPE( INT64, Int64, Int64)
HANDLE_TYPE(SINT32, SInt32, Int32)
HANDLE_TYPE(SINT64, SInt64, Int64)
HANDLE_TYPE(UINT32, UInt32, UInt32)
HANDLE_TYPE(UINT64, UInt64, UInt64)
HANDLE_FIXED_TYPE( FIXED32, Fixed32)
HANDLE_FIXED_TYPE( FIXED64, Fixed64)
HANDLE_FIXED_TYPE(SFIXED32, SFixed32)
HANDLE_FIXED_TYPE(SFIXED64, SFixed64)
HANDLE_FIXED_TYPE(FLOAT , Float )
HANDLE_FIXED_TYPE(DOUBLE, Double)
HANDLE_FIXED_TYPE(BOOL, Bool)
HANDLE_TYPE(GROUP , Group , Message)
HANDLE_TYPE(MESSAGE, Message, Message)
#undef HANDLE_TYPE
#undef HANDLE_FIXED_TYPE
case FieldDescriptor::TYPE_ENUM: {
if (field->is_repeated()) {
for (int j = 0; j < count; j++) {
data_size += WireFormatLite::EnumSize(
message_reflection->GetRepeatedEnum(message, field, j)->number());
}
} else {
data_size += WireFormatLite::EnumSize(
message_reflection->GetEnum(message, field)->number());
}
break;
}
// Handle strings separately so that we can get string references
// instead of copying.
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES: {
for (int j = 0; j < count; j++) {
string scratch;
const string& value = field->is_repeated() ?
message_reflection->GetRepeatedStringReference(
message, field, j, &scratch) :
message_reflection->GetStringReference(message, field, &scratch);
data_size += WireFormatLite::StringSize(value);
}
break;
}
}
return data_size;
}
int WireFormat::MessageSetItemByteSize(
const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
int our_size = WireFormatLite::kMessageSetItemTagsSize;
// type_id
our_size += io::CodedOutputStream::VarintSize32(field->number());
// message
const Message& sub_message = message_reflection->GetMessage(message, field);
int message_size = sub_message.ByteSize();
our_size += io::CodedOutputStream::VarintSize32(message_size);
our_size += message_size;
return our_size;
}
void WireFormat::VerifyUTF8StringFallback(const char* data,
int size,
Operation op) {
if (!IsStructurallyValidUTF8(data, size)) {
const char* operation_str = NULL;
switch (op) {
case PARSE:
operation_str = "parsing";
break;
case SERIALIZE:
operation_str = "serializing";
break;
// no default case: have the compiler warn if a case is not covered.
}
GOOGLE_LOG(ERROR) << "Encountered string containing invalid UTF-8 data while "
<< operation_str
<< " protocol buffer. Strings must contain only UTF-8; "
"use the 'bytes' type for raw bytes.";
}
}
} // namespace internal
} // namespace protobuf
} // namespace google